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ABSTRACT

Theoretical approaches to fluid characterization and nonideal spherical cavity

characterization through resonant acoustic measurements have been compiled,

clarified, and extended.  Consideration is given to geometric defects, cavity

boundary and bulk dissipative mechanisms, and the effects of a compliant

boundary.  The overall general nature of this report allows it to serve as a primer

and reference for a variety of applications.  However, the emphasis is toward

current Laboratory interests in quantifying geometric properties of millimeter-

sized capsules manufactured for fusion implosion studies and equation-of-state

experiments.
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I. INTRODUCTION

This report addresses theoretical issues of acoustic characterization of fusion fuels and

fusion implosion capsules.  Of specific interest are fill-pressure, cryogenic vapor density,

solid hydrogen fuel distribution, capsule cavity geometry details, and equation-of-state

measurements of hydrogen isotope mixtures.  The spherical symmetry of these capsules

allows this variety of information to be obtained through the application of acoustic

resonator theory.  Fortunately, the use of spherical acoustic resonators for determining

physical properties of contained fluids has been an area of active research for many years.

The resonance signatures provide measures of sound velocity and molecular dissipative

effects.  Together with various experimental constraints, these quantities translate into

equation-of-state data, viscosity, thermal diffusivity, and interestingly, resonator shape

parameters. While most experiments are readily designed for precise temperature and

pressure control, the greatest attraction of spherical resonators is the ability to approach

six-digit accuracy in resonance frequency placement.

Four goals have motivated this report.  First, there is a need for compiling the theoretical

structure that analyzes the mechanical response of nominally spherical objects.  This

report seeks to extract and compile the body of knowledge relevant to capsule geometry

and fluid characterization.  Second, this report seeks to clarify the development of often

mathematically involved theories.  In this way a greater understanding can be attained

and the complete tools for extending certain results can exist in one place.  Third, some

theories need to be extended and limiting cases examined.  Fourth, this report becomes a

reference for the experimenter in dealing with this somewhat specialized problem.

Treatment begins with the ideal spherical cavity acoustic resonator.  The effects of a

nonspherical cavity boundary on the resonance signature is then examined with extensive

development of model cavity deformations.  Next, the effects of a compliant boundary

are examined.  Then consideration is given to the dissipative mechanisms inherent to

nonideal fluids.  Finally, various ties to experimental applications are addressed.  Much

of the theory and results are compiled, woven, and extended from existing treatments.  It
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is impossible to present comprehensive citations; however, liberal references are cited in

the text which are representative of major efforts.  Extensive appendices tabulate

information necessary for reproducing and extending calculations, computing acoustic

responses and developing the most helpful experiments.  The appendices also provide a

notation summary and reference list.

I would like to thank several people whose contributions have been valuable in compiling

this report: James Hoffer for continually clarifying the special issues of inertial

confinement fusion (ICF) capsule characterization; Kevin Vixie for discussions of data

analysis; Larry Foreman and Art Nobile for always keeping me focused on relevant

issues; and Peter Ebey for suggesting this report in the first place.
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II.  THE IDEAL SPHERICAL CAVITY RESONATOR

This opening section develops the resonant response of an inviscid fluid contained by the

infinitely rigid wall of a spherical cavity.  The normal mode fluid motions and

frequencies are described and much of the notation is established for use in later sections.

This basic treatment follows closely that of any beginning acoustics text.  A good fluid

dynamics reference is Pierce (1989).

A.  The Governing Equations for Fluid Motion

The density ρ , pressure P , and velocity 
r
v  of an inviscid fluid are related in time and

space through Euler’s equation:

( )ρ
∂
∂

ρ
r

r r r rv

t
v v P+ • ∇ = −∇ (1)

where the usual vector notation has been used.  This equation simply relates the changes

in the state variables in space and time.  This equation is also nonlinear.  Thus, it is

advantageous to develop a linear version of equation (1) suitable for small amplitude

disturbances.  Consider the notation:

ρ ρ ρ= + ′0 (2a)

s s s= + ′0 (2b)

P P P= + ′0 (2c)

r r r r
v v v v= + ′ = ′0 (2d)

where the zero subscript is descriptive of the ambient fluid conditions and the prime

notation indicates deviations from that ambient.  In this case, the ambient conditions are

static (
r
v0 0= ).  The entropy is denoted s .  The primed quantities are restricted to be

small relative to the ambient conditions, and 
r ′v  to be small in the sense that it can only

produce small changes in ρ  and P .  Equation (1) is now linearized by keeping only

terms linear in the primed quantities:
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ρ
∂
∂0

r r′
= −∇ ′

v

t
P . (3)

This equation is the linear Euler’s equation.  In a simplistic (but true) sense it says that

fluid particles accelerate from regions of higher pressure to regions of lower pressure.

Alternately, it says that particle convergence is accompanied by an increase in pressure

and vice versa.

There is no a priori reason for introducing the velocity potential.  It just turns out to be a

very convenient way to describe most of what follows.  Consider the curl of equation (3):

r r r
∇ ×

′
= −∇ ′





ρ
∂
∂0

v

t
P

( )ρ
∂
∂0 t

v P
r r r r
∇ × ′ = −∇ × ∇ ′ . (4)

Now the right hand side of equation (4) is identically zero.  The curl of a gradient is

always zero!  Thus the left hand side of equation (4) must also equal zero:

( )∂
∂t

v
r r∇ × ′ = 0 . (5)

This equation is satisfied if the velocity is written as a gradient of some scalar function

(since the curl of a gradient is zero, again).  Let

r r
′ ≡ ∇v Ψ . (6)

Ψ is known as the velocity potential function.  It is a scalar whose gradient maps out the

velocity field of the fluid according to equation (6).  Inserting this equation into equation

(3) yields a new expression for the pressure:

′ = −P
t

ρ
∂
∂0

Ψ
. (7)

Still, the usefulness of the velocity potential is not obvious.  However, it is nice to have a

scalar function that completely expresses the fluid properties throughout the volume.
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Fluid motion is further governed by the idea that mass is conserved in the system.  In

other words, movement of mass always accompanies density changes in the system.  This

idea is expressed mathematically as

r r∇ • + =v
t

1
0

ρ
∂ρ
∂ (8)

which is the mass conservation equation.  Once again a linear approximation is sought

using equations (2).  The result is

( )ρ
∂ρ
∂0 0

r r∇ • ′ +
′

=v
t

. (9)

Or, in terms of the velocity potential:

∂ρ
∂

ρ
′

= − ∇
t 0

2Ψ . (10)

To study sound propagation in the fluid, we must consider the relationship between the

pressure and density.  The pressure is written as a function of density and entropy:

( ) ( )P P s P s s= = + ′ + ′ρ ρ ρ, ,0 0 . (11)

Equation (11) is the equation of state (EOS) for the fluid of interest.  If this function is

expanded in a Taylor series it is found that

( )P P s
P P

s
s= +







 ′ + 



 ′ +ρ

∂
∂ρ

ρ
∂
∂0 0

0 0

, L   . (12)

Now for typical acoustic wave propagation, ′s  is negligible (acoustic waves are very

nearly adiabatic for virtually all acoustic applications of general interest).  Immediate

correspondences follow:

( )P P s0 0 0= ρ , (13)

′ =






 ′P

P∂
∂ρ

ρ
0

. (14)
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The starting point for a workable sound wave propagation equation is equation (14).

Taking the time derivative yields:

∂
∂

∂
∂ρ

∂ρ
∂

′
=









′P

t

P

t
0

. (15)

Now using equation (10) and the time derivative of equation (7), equation (15) becomes

∇ =








2

0

2

2

1
Ψ

Ψ
∂
∂ρ

∂
∂P t

.
(16)

This equation is the wave equation for adiabatic sound wave propagation.  The form itself

reveals the adiabatic sound speed c  to be given by

c
P2

0

=








∂
∂ρ (17)

so that a compact form is obtained for the wave equation

∇ − =2
2

2

2

1
0Ψ

Ψ
c t

∂
∂

. (18)

For harmonic time varying phenomena, such as is the case for resonant acoustics, the

velocity potential can be written

tie ωψ=Ψ . (19)

Here ω  is the harmonic angular frequency and use is made of the complex number

notation i = −1 .  Using this notation, the wave equation is transformed into the

Helmholtz equation:

∇ + =2 2 0ψ ψk (20a)

k c≡ ω . (20b)

This expression is the basis for the description of all small amplitude acoustic resonance

phenomena.  Thus far there is complete generality with regard to fluid properties,
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boundary conditions, and fluid volume geometry.  It is not descriptive of travelling waves

as is equation (18).

B.  Spherical Polar Coordinate Solution

Since the goal is to describe resonances within a spherical enclosure, it can be expected

that the boundary conditions and mode shapes (to be encountered later) will be most

compactly expressed in terms of spherical polar coordinates.  Thus, solutions of equation

(20) should be sought within this framework.  The Helmholtz equation is

sin sin
sin

sinθ
∂
∂

∂ψ
∂

∂
∂θ

θ
∂ψ
∂θ θ

∂ ψ
∂φ

θψ
r

r
r

k r2
2

2
2 21

0




 + 



 +









 + = . (21)

The radial coordinate r  is the distance from the coordinate origin (center of the sphere of

interest).  The polar coordinate θ  is analogous to latitude on a globe and is measured in

degrees from the vertical.  The azimuthal coordinate φ  is analogous to longitude and is

measured in degrees from any reference axis perpendicular to the vertical.  The triplet

axes ( )φθ ˆ,ˆ,r̂  form a right-handed coordinate system.  The solution of equation (21) for

regions enclosing the coordinate origin is well known and is simply quoted here:

∑∑
∞

=

+

−

=
0l

l

l

ll mma ψψ (22)

where

( ) ( )ψ θ φl l lm mj kr Y= , . (22a)

Equation (22) states that all harmonic fluid motion ψ  can be written as a sum of

individual and orthogonal resonant modes ψ lm  with various amplitudes mal .  Each

resonant mode of order l  has radial dependence described by the spherical Bessel

function of the same order ( )j krl .  Similarly, the angular dependence is described by the

spherical harmonic functions ( )Y ml θ φ, . It is important to recall that the actual velocity
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and displacement are calculated using equations (6) and (7).  Some of these functions are

tabulated here with more detail provided in Appendices B and C.

( )j x
x

x0 =
sin

(23a)

( )j x
x

x

x

x1 2= −
sin cos

(23b)

( )j x
x x

x
x

x2 3 2

3 1 3
= −



 −sin cos . (23c)

( )Y00
1

4
θ φ

π
, = (24a)

( )Y e i
1 1

3

8, , sin−
−= +θ φ

π
θ φ (24b)

( )Y10
3

4
θ φ

π
θ, cos= + (24c)

( )Y e i
11

3

8
θ φ

π
θ φ, sin= − + (24d)

( )Y20
25

4

3

2

1

2
θ φ

π
θ, cos= −





(24e)

( )Y30
37

4

5

2

3

2
θ φ

π
θ θ, cos cos= −



 . (24f)
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C.  Resonance Frequencies and Motions

The eigenvalues (or frequencies) of the Helmholtz equation are determined by the

boundary conditions.  For a rigid spherical boundary the normal component of the fluid

velocity must vanish at the cavity wall ( r a= )

[ ]$r v r a• ′ ==
r

0 . (26)

Here $r  is the unit vector in the radial direction.  For a given resonance mode this

condition reduces to

( )[ ]∂ψ
∂

∂
∂

l
l

m

r a
r ar r

j kr
=

=
= = 0 (27)

which is commonly written as

( )′ =j kal 0 (28)

so that the prime indicates a derivative with respect to the radial coordinate and the

function is then evaluated at the boundary r a= .  Let z sl  be the roots of equation (28).

They can be computed directly or looked up in tables.  The index l  indicates the order of

the resonance mode, and the index s  enumerates the infinite number of roots for a given

order.  The relationship to the modal frequencies is given through equation (20b) as

z k a
f a

cs s
s

l l
l= =

2π
(29)

or f
z c

as
s

l
l=

2π
(30)

where c  is the sound velocity and f sl  is the long-sought resonance frequency.  Appendix

D lists several of the (dimensionless) roots z sl .

It is important to note that the resonance frequencies are independent of the azimuthal

index m .  For a given mode index l , m  can take on 2 1l +  values from − l  to l .

Because of the high degree of symmetry in this system, each of these 2 1l +  modes has

the same frequency.  This commonality in frequency is termed degeneracy.  In a system
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with less symmetry (such as a distorted sphere) some or all of this degeneracy would

disappear and the frequencies would then have index m  dependence.

Notice also that the velocity potential eigenfunctions appear to be independent of the

index s .  This is not actually the case.  When equation (22) was written it was not then

known that each eigenfunction is satisfied by an infinite number of frequencies (index

s ).  This is completely analogous to standing waves in an open ended pipe in which a

single eigenfunction [ψ = sin kx ] is satisfied by an infinite number of frequencies

[ L,2,1,0,2)1( =+= sLcsf s ].  This index represents fundamental ( s = 0 ) and overtone

( s > 0) frequencies.  With this knowledge, equation (22) can be written as

( ) ( )ψ θ φl l l lms s mj k r Y= , (31)

which explicitly shows all geometric and resonance dependence.  Once again, k  is

shown without m  dependence because k  is completely degenerate with respect to m .

Consider first the simplest case l = 0 .  The allowed values for m  range from − l  to l  so

that m = 0  also.  The velocity potential is

( ) ( )ψ θ φ00 0 0 00s sj k r Y= , (32)

or more explicitly

ψ
π00

0

0

1

4s
s

s

k r

k r
=

sin
. (33)

The velocity profile is computed from equation (6) and the pressure distribution from

equation (7):

( ) ( )r ′ ∝
−

v
k r k r k r

k r
r

s s s

s

0 0 0

0
2

cos sin
$ (34)

( )
′ ∝P

k r

k r
s

s

sin 0

0

. (35)
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The velocity and pressure throughout the cavity depend only upon the radial coordinate.

The direction of motion is also radial.  These l = 0  modes are known as radial modes or

breathing modes.  The roots k s0  are found in the top row of Table D2.  The first root

represents a physically unrealizable solution.  Higher-order roots show typical overtone

structure with pressure and velocity nodal surfaces in increasing complexity.  A few

modes are sketched in the top row of Table E1.

Next consider the l = 1 modes.  Now m  can take on three values: -1, 0, and 1.  Each of

these three modes has a different pressure and velocity pattern within the cavity but the

same frequency.  Thus, for clarity’s sake, consider the axisymmetric m = 0  mode as a

representative example.  The velocity potential, velocity, and pressure in the cavity are

given by:

( )
( )

( )
( )ψ

π
θ10

1

1
2

1

1

3

4s
s

s

s

s

k r

k r

k r

k r
= −













sin cos
cos (36)

( )
( ) ( ) ( ) ( ) ( )[ ]

( )
( ) ( ) ( )[ ]

r
′ ∝ + −

− −

v
k r

k r k r k r k r k r r

k r
k r k r k r

s

s s s s s

s

s s s

cos
sin cos sin $

sin
sin cos $

θ

θ
θ

1
3 1

2
1 1 1 1

1
3 1 1 1

2 2

(37)

( )
( ) ( ) ( )[ ]′ ∝ −P

k r
k r k r k r

s

s s s

cos
sin cos

θ

1
2 1 1 1 . (38)

The velocity and pressure now depend upon both the radial and polar coordinates.

Already the mathematical description is quite complicated.  The roots k s1  are found in

the second row of Table D2.  The fundamental frequency of this series is the lowest

frequency mode of the cavity and is characterized by a sloshing motion from one side of

the cavity to the other.  This mode and a few of the overtones are sketched in the second

row of Table E1.
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The mathematical expression of higher-order modes and their overtones quickly becomes

unwieldy.  However, the sketches of Table E1 neatly summarize all of the basic

characteristics.  This table shows only the axisymmetric m = 0  modes.  The non-

axisymmetric m ≠ 0  modes have the same frequencies but different azimuthal

characteristics.

In Table E1, shades of gray indicate instantaneous local fluid velocity during one half of

the harmonic cycle.  During the other half of the cycle, fluid flow reverses the pressure.

For example, the l = =0 1, s  radial mode has fluid alternately moving outward toward

the cavity wall and inward toward the cavity center with frequency f01 .  Similarly, the

l = =1 0, s  mode has fluid sloshing from one end of the cavity to the other with

frequency f10 .  Overtone modes show similar behavior with an increasing number of

regimes of motion/pressure.  Extrapolation to higher order modes and overtones is clear

from the table progression.
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III.  THE EFFECTS OF BOUNDARY SHAPE PERTURBATIONS

This section outlines the important and useful structure of boundary perturbation theory

(BPT) applied to a nearly spherical cavity.  The relationship between cavity boundary

defects (deviations from sphericity) and changes in the normal mode fluid response are

established.  The derivations and notation follow that of Mehl (1982 and 1986), although

the mathematical framework appears here in greater detail.

A.  Boundary Perturbation Theory Development

Consider a nearly spherical cavity boundary given by

( )











−= ∑

qp

pqpqYar
,

,1 φθε . (39)

Where a is the unperturbed cavity radius and 1<<pqε  for all p and q.  It is convenient to

abbreviate the notation of equation (39) as

( )gar ε−= 1 (40)

 where equivalency is understood.  The angular perturbation information is contained in

the function g  which need not be small.  The single parameter ε  represents the entire

smallness information necessary for the cavity to be nearly spherical.

The eigenfunctions, equation (31), are no longer orthonormal over this nonspherical

cavity volume and do not represent a solution to equation (20).  However, because the

cavity boundary is only slightly perturbed, it is an excellent approximation to consider the

eigenfunction set

∑
′′′

′′′′′′=
sm

smsmmsms b
l

llll ψϕ , (41)
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So that each new eigenfunction ϕlms  is a linear combination of the old eigenfunctions

ψ lms .  The correct boundary condition at the perturbed surface S is given by the

generalization of equation (26):

$n ms
S

• ∇ =
r

lϕ 0. (42)

Where $n  is the unit normal to the surface S.  With this approach, Morse and Feshbach,

(1953) and Mehl (1982), derive an expression for the eigenvalues of this cavity:

( ) ( )k

k

A

k N

A

N N k k k
O

s

ms ms

s ms

ms m s

ms m s s s sm s

2

2 2

2

2 2 2
31

l

l l

l l

l l

l l l l ll

= + +
−

+
′ ′ ′

′ ′ ′ ′ ′′ ′ ′
∑, ,

*

ε . (43)

In this expression the unperturbed eigenvalues k sl of equation (29) and the perturbed

eigenvalues k  (with any subscripts suppressed) are found.  The asterisk on the

summation indicates the exclusion of the triplet{ }lms .  This equation is correct to order

ε 2  although this dependence is not immediately apparent.  The A and N integrals are

defined by

A n dSms m s m s ms
S

l l l l

r
,

* $′ ′ ′ ′ ′ ′≡ • ∇∫ ψ ψ (44)

N r dr dms ms
V

l l≡ ∫ ψ 2 2 Ω . (45)

An asterisk superscript indicates complex conjugation, dS r d d= 2 sinθ θ φ , and

d d dΩ = sinθ θ φ .

Equations (40), (43), and (45) contain all information for calculating the resonance

frequencies of a nearly spherical cavity correct to second order in the smallness

parameter ε.  Further development is facilitated by expressions for the radial derivatives

of the spherical Bessel functions.  From Arfkin (1985) Problem 11.7.4:

( )′ =j k asl l 0 (28)
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( ) ( )
( )

( )′′ = − −
+











j k a
k a

j k as

s

sl l

l

l l

l l
1

1
2 (46)

( ) ( )
( )

( )′′′ = −
+
















j k a

k a k a
j k as

s s
sl l

l l
l l

l l
1

2 1 2
2 . (47)

Now, from condition (40) the Taylor expansions of the spherical Bessel function and its

first two derivatives are:

( ) ( ) ( )j k r j k a Os sl l l l= + ε 2 (48)

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]{ }

( )3

22 121

ε

εε

O

akgak
ak

akj
grkj ss

s

s
s

+

+−++−=′ llll ll

l

ll
ll

(49a)

( ) ( )
( )

( ) ( )
( )

( ) ( )2
22

12
12

1
1 εε Oakj

ak
gakj

ak
rkj ls

ls

ls

ls

s +










 +−−










 +−−=′′ llll

llll
(49b)

Finally, the normal derivative on a spherical surface S is given in spherical coordinates by

$ $
$ $

sin
n

S

S
r

r r r
• ∇ =

∇
∇

• + +








r
r

r
∂
∂

θ ∂
∂θ

φ
θ

∂
∂φ

. (50)

Where specifically from equation (40):

( )garS ε−−= 1 . (51)

Thus,

212222

2

2

2

sin
1

sin
ˆ


























∂

∂






+






∂

∂






+

∂
∂

∂

∂+
∂
∂

∂

∂+
∂
∂

=∇•

φθ
ε

θ
ε

φφθ
ε

θθ
ε

g

r

ag

r

a

gag
a

r
r

nr
r

.
(52)
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B.  Calculation of the A Integrals

Now consider the evaluation of equation (44).  Making liberal use of the relations in the

previous section, the various components of the integral can be expanded to appropriate

orders in ε:

( ) ( ) ( ) ( )
( )

( )












+










 +′′
−−=

′′

′′
′′′′′′′′

322
2

2
** 1

1
2

1, εεφθψ Og
ak

ak
akjY

s

s
smsm

l

l
llll

ll
(53)

( ) ( ) ( )
( )

( )322
2

322 1
1, εεεφθ

ψ
Ogg

ak
Yakjak

r
r

s

mss
ms +













−










 +−=
∂

∂

l

llll
l ll

(54)

( ) ( ) ( )3, ε
θ

φθ

θ
ε

θ

ψ

θ
ε Oakj

Yg
a

g
a s

mms +
∂

∂

∂

∂=
∂

∂

∂

∂
ll

ll
(55)

( ) ( ) ( )3,
ε

φ

φθ

φ
ε

φ

ψ

φ
ε Oakj

Yg
a

g
a s

mms +
∂

∂

∂

∂=
∂

∂

∂

∂
ll

ll
(56)

( )2

212222

1
sin

1 ε
φθ

ε
θ

ε O
g

r

ag

r

a +=

























∂

∂






+






∂

∂






+ . (57)

Keeping all terms up to order ε 2:

( ) ( ) ( )
( ) ( )

( ) ( )
( )

( )

( ) ( )

∫





































































−










 +−+

∂

∂

∂

∂+
∂

∂

∂

∂

×

=

′′′′′

′′′

φθε

φθε

φ

φθ

φθ
ε

θ

φθ

θ
ε

φθ

,

,
1

1

,

sin

,

,

222

2

2

2

*

,

ms

m

s

s

mm

mss

smms

Ygaka

Y
ak

gaka

YgaYg
a

Yakjakj

A

ll

l

l

l

ll

lllll

ll ll . (58)
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This integral simplifies considerably for the special (but important) case of radial

oscillations ( l = =0 0, m ):

( ) ( )[ ] ( )322
00

32
0,00 0000 εεε OgmgmakjakjakA ssssms +′′−′′= ′′′′′′ lllll (59)

( )[ ] ( )322
0

2
0

32
000,00 00000000 εεε OggakjakA ssss +−= (60)

where

( ) ( )∫ Ω≡′′ ′′ dYxYmxm mm φθφθ ,,*
llll . (61)

C.  Calculation of the N integrals

Now consider the N integral equation (45).  Making the use of Arfken Problem 11.2.1.b:

( )[ ] ( )[ ]
( )

( )[ ]






















++′=∫ 2

2

2
2

0

2
2 1

2
kxJ

kx
kxJxdrrkrJ

x

ννν
ν

(62)

and the substitutions ( )gax ε−= 1  and v = +l 1 2 it can be quickly shown that

( ) ( )
( )

( ) ( )2
2

2
3

21
1

1
2

εε Omgm
ak

akjaN
ls

lsms +−










 +−= ll
ll

ll . (63)

Use has again been made of the shorthand notation of equation (61).  For the case N 000 ,

equation (62) cannot be used because k = 0 for this unphysical root.  The integral is still

required for completeness in subsequent calculations and is given thus:

( ) ( )3
3

2
000 000031

3
εε OgaddrrN

V
+−=Ω= ∫ . (64)

The general case for overtone radial oscillations ( l = = >0 0 0, ,m s ) is given from

equation (63) as:

( )( ) ( ) 0,000021
2

3
0

2
0

3

000 >+−= sOgakjaN s εε . (65)
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D.  Radial Mode Eigenvalue Perturbations

Equation (43) can now be evaluated for all resonant modes.  Consider first the radial

mode eigenvalue shifts to second order in ε.

( ) ( )k

k

A

k N

A

N N k k k
O

s

s s

s s

s m s

s m s s s sm s

2

0
2

00 00

0
2

00

00

2

00 0
2 2

0
2

21= + +
−

+
′ ′ ′

′ ′ ′ ′ ′′ ′ ′
∑, ,

*
l

l ll

ε . (66)

This equation is evaluated with equations (59), (60), (63), (64), and (65).  The result is

( )
( )32

2

2**

22
0

2
02

2222

2
0

2

00
1

4

0000600002000021

εε

εεε

Ogm
z

z

zz

z

ggg
k

k

s

s

sm ss

s

s

+′′













+′′−












−
+

+−+=

′′

′′

′′′ ′′
∑ l

lll

l

l l

(67)

where the double asterisk on the sum indicates omission of the term { }00s as well as the

term { }000 which has already been evaluated and contributes to the last term of the first

line in equation (67).  The z notation of equation (29) is used for compactness.  This

equation can be simplified by considering the volume change produced by the boundary

perturbation.  The new cavity volume is given by

( )( )32232 00003000031
3

4~ εεεπ OggaddrrV ++−=Ω= ∫ ∫ . (68)

Tilde notation indicates quantities relative to the perturbed cavity volume.  The

equivalent radius a~ for this new volume V
~

is

( ) 3122 00003000031~ ggaa εε +−= . (69)

The eigenvalue shifts are inversely proportional to the radius shift.  Thus

( )3222

2

2

2
0

2
0 0000500002000021

~

~
εεεε Oggg

a

a

k

k

s

s ++−+== . (70)

Now, subtracting these volume change terms of equation (70) from equation (67):
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( )
( )

.
00

1
4

0000
~

32

2

2**

22
0

2
02

22

2
0

2
0

2

εε

ε

Ogm
z

z

zz

z

g
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kk

s

s

sm ss

s

s

s

+′′











+′′−










−
+

=−

′′

′′

′′′ ′′
∑ l

lll

l

l l

(71)

At this point it is clear that perturbations that do not alter the volume of the cavity do not

affect the radial mode frequencies to first order.  In other words, all of the terms in

equation (71) are second order in the perturbations.  Evaluation of the summation terms

further simplifies this expression.  Mehl (1982) outlines the calculation, and the results

are reported here.

( )∑ ∑
∞

=′

′

′−=′
′′ +′′=

−

2

322

2
0

2
0

2

004
~

l

l

l

l l
m

s

s

s OgmS
k

kk
εε (72)

( )
S

z

z z

z

z
s

s

s s

s

ss s

′ ′
′ ′

′ ′

′ ′′ ′≠

≡
− − ′ ′ +∑l

l

l

ll
l l

0
2

0
2 2

2

2
0 1

. (73)

Notice that the ′ =l 0 term was evaluated and exactly cancels the leading term in equation

(71).  The ′ =l 1 term evaluates to zero.  A useful relation for evaluating the S constants

is given by Mehl (1982):

( )
( ) ( ) ( )S

z j z

z j z j z
s

s s

s s s
′ ′

′ ′ ′

′ ′− ′ ′ ′
=

− ′ +
′ >l

l

l ll
l

0
2

0

0 1 0 02 1
1, (74)

and the first few values are explicitly,

S s0

1

4′ = (75)

S s1 0′ = (76)

S
z

s
s

2
0
2

6
′

′= − (77)
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( )S
z

z
s

s

s
3

0
2

0
2

5

2 20
′

′

′

=
−

(78)

( )
( )

S
z z

z
s

s s

s

4

0
2

0
2

0
2

35

10 2 35
′

′ ′

′

= −
−

−
. (79)

Alternatively, one can use a recursion relation to generate various S values:

( )[ ]
( )[ ] ( )

2,
1214

12

2
0,1

22
0

2
0

2
0,1 ≥′

+′+−′−

−−′
=

′′−′′

′′′−′
′′ l

ll

l

l

l
l

sss

sss
s

zSz

zzS
S . (80)

E.  Nonradial Mode Eigenvalue Perturbations

Evaluation of the nonradial mode frequency shifts is complicated by their degeneracy.

The ( )12 +l  unperturbed modes of indices { }msl  all have the same eigenvalue skl

rendering equation (43) unworkable.  The standard approach in degenerate perturbation

theory is to determine the set of linear combinations of eigenfunctions that diagonalizes

the mode-coupling matrix.  Each set of degenerate modes can be treated separately.  As

with the radial modes, consider only the perturbed eigenvalues 2k  relative to the

eigenvalues of a perfect sphere 2
skl  with the same volume as the unperturbed sphere.

Making use of equation (70) and equation (43), define the matrix slB whose diagonal

elements are proportional to the difference of the ε  coefficients:

mm

mss

smmss
mm g

Nk

A
′

′
′ −≡ δ

ε
0000

2 2

,

ll

lllB  . (81)

Defining the matrix slB  in this way allows the degenerate mode frequency shifts to be

represented simply as

( )2

2

22

2
~

εε O
k

kk s
m

s

s +Λ=
− l

l

l
(82)
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where the s
m
lΛ  are the ( )12 +l  eigenvalues of slB .  The remainder of this section is

devoted to the reduction of equation (81) in terms of the boundary perturbation function

g .  The A and N integrals are given by equation (58) and equation (63).  Using equation

(49a) it is readily found that

( )

( ) .0000

sin
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1

1 *

2

*

εδ

φφθθθ
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
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∫

∫
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l

ll
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B

(83)

Further evaluation requires specific information about the cavity shape contained in the

function g .  Consider a general surface perturbation expressed as an expansion in

spherical harmonics:

( ) ( )∑ ∑
∞

= −=

=
0

,,
p

p

pq

pqpq Ycg φθφθ . (84)

Actually, equation (84) is too general because we must require that g  is real.  For

describing such a surface it is appropriate, without loss of generality, to require that pqc

be real and that ( ) pq
q

qp cc 1, −=− .  In terms of these specific boundary perturbations,

equation (83) can now be expressed as
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2

sin

11

1

1B

(85)

where the 0=p  term exactly cancels the volume-change term shown explicitly in

equation (83).  Amazingly, this expression can be considerably simplified.  Consider the

integral portion of equation (85)
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and use equation (C17) to obtain the equivalent expression in terms of Associated

Legendre Polynomials:
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where

θξ cos≡ (88)

is the suppressed argument of the Associated Legendre Polynomials and

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )
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is a rather complicated constant factor, which will later be reincorporated into

expressions in terms of Spherical Harmonic functions.  The φ integral in equation (87) is

zero unless

qmm +=′ . (90)

Now consider the middle term in the ξ integral

( ) ξ
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ξ d
PP

PI mpq
m

∂

∂

∂

∂
−= ∫

−
′

l
l

2

1

1

0 1 (91)

and define
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P
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mPv l≡ (93)

and integrate by parts according to equation (F3) to obtain
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Now the first term of equation (94) vanishes identically.  The integrand of the last term

can be evaluated and transformed using equation (F5) to obtain
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This may not seem like much of an improvement over equation (91).  However, the first

integral of equation (95) is of the same form as equation (91) with cycled indices.  Thus,

two more rounds of integration by parts transform equation (95) into
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or more compactly as
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where equation (90) has been used.  Now substitute this expression for I0 back into

equation (87) to obtain the B matrix integral
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which in terms of Spherical Harmonic functions is

( ) ( ) Ω



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


+++−= ∫

−

′ dYYYppzI mpqms

1

1

*2 1
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11 lll ll . (99)

And finally, the B matrix expression can be compactly written as

mYmd pq

p

p

pq

pq
s
mm lll ′= ∑ ∑

∞

= −=
′

1

B (100)

where
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( )


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
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
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+−

+
+≡

1

1
1

2

2

1

llls

pqpq
z

pp
cd , (101)

∫ ′Ω≡′ mpqmpq YYYdmYm llll * . (102a)

Thus, the calculation of the degenerate mode frequency shifts of equation (82) has been

reduced to a calculation of the eigenvalues of a B matrix whose elements are written in

terms of integrals of Spherical Harmonic functions.  Fortunately, integrals of this form

are well known in quantum mechanics and are readily evaluated in terms of Clebsch-

Gordan (C) coefficients.  Specifically,

( ) ( )000;;
4

12
llllll pCmmqpC

p
mYm pq ′+=′

π
(102b)

where the C coefficients can be evaluated by a variety of methods or simply looked up in

tables.  Further, it is advantageous to define the product coefficient
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( ) ( ) ( )000;;;
~

llllll pCmmqpCmmqpC ′≡′ (103)

for ease of coefficient tabulation and of B matrix construction.

Appendix G lists a large variety of C and C
~

 coefficients relevant to this work.  Equation

(102) is zero unless qmm +=′  as would be expected as seen in the derivation.

Interestingly, the symmetry properties of the C coefficients also require that p is even.

Thus a general result of the BPT is that only even-order boundary perturbations affect the

eigenfrequencies to first order in ε.

F.  The Nature of the B Matrix

To bring the B matrix from the abstract into the realm of application, consider the

construction and eigenfrequency extraction for a few cases.  Recall that in the B matrix

derivation it was convenient to express the perturbed boundary by equation (40) instead

of the actual boundary condition given in equation (39).  The shape function g  was

finally given character in equation (84) but still did not contain any “smallness”

information.  Now return to the frequency shift definition of equation (82) and

incorporate the smallness parameter ε into the shape perturbation function g .  That is

1<<pqc  for all p and q.  Then correct to order pqc  equation (82) is recast as

{ }s
mm

s
m

s

ms

s

sms Ei
f

f

f

ff ll

l

l

l

ll
′=Λ=

∆
=

−
B

~~

(104)

where B can now be compactly written as

( )mmqpC
p

d

even
p

pq
s
mm ′+= ∑

=
′ ;

~

4

12
2

2

ll
l

l

π
B (105)

or equivalently
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( ) pq
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s
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=
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2

ll
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l
lB (106)

where the new constant K is defined as

( ) ( )
( ) 
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z

ppzp
K

π
. (107)

The conditions qmm +=′  and l≤′mm ,  are implicit in the evaluation of C
~

.  While the

condition that p be even is also implicit in the evaluation of C
~

, it is explicitly stated in

equation (106) to emphasize the dependence only on even orders of cpq.  Notice also that

the eigenfrequencies msf l
~

 now have index m that enumerates the now nondegenerate

frequencies (formerly 12 +l  degenerate at frequency sf l ).  However, it is possible that

for a given perturbation the degeneracy may not be completely broken (B may have

repeated eigenvalues).

Consider the matrix describing the frequency shifts of the lowest-order resonance f10 and

the overtones f1s.  In this case 1=l and 2=p  only, and along with the coefficients in

Table G1 the B matrix is readily constructed:




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

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

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+
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
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


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
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=

202122

212021
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2
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2
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202122

212021

222120
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2
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5

5

1

36

323

63

5

ccc

ccc

ccc

z

z

ccc

ccc

ccc
K

s

s

ss

π

B

(108)

where the real-boundary condition ( ) pq
q

qp cc 1, −=−  has been used.
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The B matrices and their eigenvalues have several interesting properties that are

illustrated nicely in equation (108) and in the equations in Appendix H.

1. slB is symmetric.  Namely, s
mn

s
nm

ll
,, BB = .

2. slB has symmetry properties about the backwards diagonal.  Specifically,

s
mn

s
nm

ll
−−−= ,, BB if nm ≠  and s

mn
s

nm
ll

−−= ,, BB otherwise.

3. Properties 1 and 2 together reduce the number of independent elements from

( )212 +l to ( )21+l , which nicely reduces the calculations necessary for constructing

a matrix slB .  Expressions for the eigenvalues are also simplified considerably.

4. { } 0Tr =slB .  This property is equivalent to having eigenvalues that sum to zero.

Thus to first order in the perturbation parameters pqc , the sum of all the frequency

shifts msf l
~∆ for a given resonance set is zero, and the average of all frequencies msf l

~
is

equal to the degenerate parent frequency sf l .

5. For the case of axisymmetric perturbations ( 0=q ), the number of independent

eigenvalues is 1+l , which are the diagonal elements of each matrix.  This partial

degeneracy breaking is indicative of axisymmetry and does not occur generally for

any other constraints on the coefficients pqc .

6. The matrix elements and eigenvalues depend only upon even-order shape

perturbations (p even).  Any cavity distortion described by odd-order perturbations

does not affect the cavity resonances to first order in the cpq.
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IV.   MODEL DEFORMATION #1 – HEMISHELL CONSTRUCTION

This section considers the cavity shape perturbations that might naturally arise from

construction by adjoining two spherical hemishells.  Certain predictable deformations

may be present:

1. The hemishells have different radii.

2. Either hemishell is cut long or short, or the two are bonded long or short.

3. The symmetry axes are parallel but not coincident.

4. The two symmetry axes have an angular offset (non-parallel).

The perturbation parameters for each type of defect are determined separately.  The

eigenfrequency calculations are then collectively discussed at the end of this section.

Mehl (1986) first addressed this type of perturbation.

A.  Hemishells of Different Radii

Let the radius of one hemishell (say the top) differ from the radius of the other hemishell

(say the bottom).  Then the radius r of the cavity can be written:

( )
( ) 











−

+
=

bottom1

top1

β

β

a

a
r (109)

where a is the nominal cavity radius and the small perturbation parameter β is chosen to

preserve the cavity volume to first order in β.  The entire cavity profile can be expressed

as:

( )θβ cosh
r

ar =−
(110)

where

( )












<−

≥+
≡

01

01

x

x
xh . (111)
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The goal is to express this perturbation in terms of an expansion in spherical harmonic

functions so that the form of equation (84) is met and the full power of the boundary

perturbation theory can be brought to bear.  Consider the expansion

( ) ( )∑≡
pq

pqpqYbh φθθ ,cos . (112)

The expansion coefficients are determined uniquely by

( ) ( )∫ Ω= dYhb pqpq φθθ ,cos . (113)

It is convenient to rewrite this expression in terms of Associated Legendre Polynomials:

( ) ( )

( ) ( )∫∫

∫∫
+

−

+

−

=

=

1

1

2

0

2

2

2

0

sincoscos

dxxPgxhde

dPghdeb

pqpq
iq

pqpq
iq

pq

π
φ

π

π

π
φ

φ

θθθθφ

(114)

where pqg is yet another constant defined by

( ) ( )
( )!

!

4

12
1

qp

qpp
g q

pq
+

−+−≡
π

. (115)

The φ integral in equation (114) vanishes unless 0=q , in which case it evaluates to 2π.

Thus the nonzero expansion coefficients are

( ) ( )∫
+

−

=
1

1

00 2 dxxPxhgb ppp π . (116)

Now h(x) is an odd function over the interval [-1<x<1] and therefore 0pb  vanishes unless

p  is also odd.  In this case

( )∫
+

=
1

0

00 4 dxxPgb ppp π . (117)
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Using equation (F6) to evaluate the integral yields (after an integration by parts and

various simple integral evaluations)

( ) ( )01
1

1

0

=−= +

+

∫ xP
p

dxxP pp . (118)

Because 1+p  is even, this expression is evaluated using equation (F9), giving a working

expression for the expansion coefficients:

( )( )

( )
{ }odd

!!1

!!
14 21

00 p
pp

p
gb p

pp
+

−= −π (119)

and two equivalent expressions for the perturbation:

( )∑
∞

=

=−

odd
p

pp Yb
r
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1

00 ,φθβ  and (120)

( )( ) ( )
( )

( )∑
∞
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+

+−=−

odd
p

p
p P

p

p

p

p

r

ar

1

21 cos
!!1

!!12
1 θβ . (121)

B.  Shortened or Elongated Hemishells

One or both hemishells may have a symmetry axis that is cut or bonded longer or shorter

than the intended radius.  Again consider top and bottom hemishells.  The radius of the

cavity can be written

( )
( ) 











−

+
=

bottomcos1

topcos1

θσ

θσ

a

a
r (122)

where a is the nominal cavity radius and the small perturbation parameter σ is chosen to

preserve the cavity volume to first order in σ.  The entire cavity profile can be expressed

as:
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( )θθσ coscos h
r

ar =−
(123)

where h is the same step function given by equation (111).  As before an expansion in

Spherical Harmonic functions is sought for equation (123).  The expansion coefficients

are again labeled pqb  because (as it will turn out later) only even p  terms will be

needed.  The coefficients are defined by

( ) ( )∑≡
pq

pqpqYbh φθθθ ,coscos , (124)

( ) ( )∫ Ω= dYhb pqpq φθθθ ,coscos . (125)

Once again recognizing that the coefficients vanish unless 0=q  and recasting the

integral in terms of Associated Legendre Polynomials:

( ) ( )∫
+

−

=
1

1

00 2 dxxPxxhgb ppp π (126)

where g is the same constant given by equation (115).  Now h(x)x is an even function

over the interval [-1<x<1] so that the integral vanishes unless ( )xPp  is an even function.

Thus p  must be even and equation (126) reduces to

( ) { }even4
1

0

00 pdxxPxgb ppp ∫
+

= π . (127)

Now using equation (F7) along with some integrations by parts, the integral part of this

expression reduces to

( ) ( ) ( )











−

+
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+

+

+
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+ 1

0

1

1

0

1

1

0 12

1 dxxPdxxP
p

dxxPx ppp . (128)

Both of the right-hand-side integrals are odd-order functions of the form evaluated by

equation (118) and equation (F9).  The result is



32

( )( ) ( )
( )( )

{ }even
!!21

!!1
14

2

22
00 p

pp

p
gb p

pp
+−

+
−= −π . (129)

And this second model perturbation can be expressed as
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1 θσ . (131)

C.  Parallel and Noncoincident Symmetry Axes

A third possible perturbation is that which might occur if the symmetry axes of the two

hemishells are not coincident due to a lateral shift (in the common equatorial plane).  In

this case the symmetry axes are still parallel and relative to a common origin the radius of

the cavity is expressed as

( )
( ) 











−

+
=

bottomcossin1

topcossin1

φθγ

φθγ

a

a
r (132)

where γ  is a small perturbation parameter chosen, once again, so that the cavity volume

is preserved to first order in γ.  The azimuthal angle φ is measured from the displacement

vector describing the lateral shift.  The complete radial profile is written using the h(x)

step function as

( )θφθγ coscossin h
r

ar =− . (133)

The appropriate expansion in spherical harmonics will now be addressed in the usual way

making use of the now familiar expansion coefficients pqb .  Again, this repeated use of

the b coefficient symbol will be justified in the end because for this case it will be shown

that the only contributions come from p  even and 1±=q .  Proceeding as before:
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( ) ( )∑≡
pq

pqpqYbh φθθφθ ,coscossin (134)

( ) ( )

( ) ( ) .1cos
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(135)

First consider the φ integral.  Writing cosφ in terms of exponential functions:

( )∫∫ −+=
π

φφφ
π

φ φφφ
2

0

2

0 2

1cos deeede iqiiiq (136)

from which it is readily determined that
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 ±=
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1if
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deiq
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π
φ . (137)

Next consider the specific case 1−=q  for which

( ) ( )∫
+

−
−−− −=

1

1

1,
2

1,1, 1 dxxPxhxgb ppp π . (138)

Now h(x) is odd and 21 x− is even over the interval [-1<x<1] so that ( )xPp 1,−  must be

odd.  Thus, p  must be even (yes even) leading to

( ) { }even12
1

0

1,
2

1,1, pdxxPxgb ppp ∫
+

−−− −= π . (139)

This equation is quickly evaluated with the aid of equation (F8) and equation (128).  The
result is

( )( ) ( )
( )( )

{ }even
!!21

!!1
12

2

22
1,1, p

pp

p
gb p

pp
+−

+
−−= −

−− π . (140)
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In considering the case of 1+=q  it is only necessary to recognize that the 1,±pb  must

describe a real boundary.  Because the spherical harmonic functions are complex, this

“reality” condition is

( ) *
, 1 pq

q
qp bb −=− (141)

or for the present case

1,1 −−= pp bb (142)

so that

( )( ) ( )
( )( )

( )( )

( )
( )
( )

{ }even
!!2

!!1

1
12

!!21

!!1
12

22
1

2

22
1,1

p
p

p

p

p
g

pp

p
gb

p
p

p
pp

+

+

−
−=

+−

+
−=

−

−
−

π

π

(143)

where it is easily verified that ( ) 11, 1 pp gppg +=− .  The perturbation expansion can now

be written as

( ) ( )[ ]∑
∞

=
−−+=−

even
p

pppp YbYb
r

ar

2

1,1,11 ,, φθφθγ (144)

or equivalently as

( ){ }∑
∞

=

=−

even
p

pp Yb
r

ar

2

11 ,Re2 φθγ . (145)

D.  The Hemishell Symmetry Axes Show an Angular Offset

If the two symmetry axes coincide at the spherical cavity center then any angular offset

does not distort the cavity shape.  This apparent deformation is simply a rotation about a

center of radial symmetry.  This case need not be considered further.
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E.  Eigenfrequency Calculations and Discussion

The results of the model perturbation calculations are collected here for convenience and

clarity.  The cavity shape is assumed linear in the perturbation parameters.

( )

( )

( ) ( )[ ]∑

∑

∑

∞

=
−−

∞

=

∞

=

++

+

=−

even
p

pppp

p

pp

p

pp

YbYb

Yb

Yb
r

ar

2

1,1,11

even
2

00

odd
1

00

,,

,

,

φθφθγ

φθσ

φθβ

(146)

( )( )

( )

( )( ) ( )
( )( )

( )( )

( )
( )
( )

( )( ) ( )
( )( ) 










































−=
+−

+
−

+=
+

+

−
−

=
+−

+−

=
+

−

=

−

−

−

−

1andevenif
!!21

!!1
12

1andevenif
!!2

!!1

1
12

0andevenif
!!21

!!1
14

0andoddif
!!1

!!
14

2

22

22

2

22

21

qp
pp

p
g

qp
p

p

p

p
g

qp
pp

p
g

qp
pp

p
g

b

p
pq

p
pq

p
pq

p
pq

pq

π

π

π

π

(147)
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Because equation (84) demonstrates that
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ar φθ (149)
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there is the immediate correspondence between the general perturbation coefficients c

and the model perturbation coefficients b:




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
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β

. (150)

Thus, the boundary perturbation solution given by equations (104) through (107) can be

readily applied.  First, the B matrices are constructed.  Then the eigenvalues are obtained

which are proportional to the eigenfrequency shifts.  Recall that the B matrices and the

resulting frequency shifts depend only upon even-order perturbations. The first model

perturbation, described by the parameter β, is of odd order.  Thus, to first order in β,

hemishells of different radii do not contribute to the degeneracy breaking of the spherical

cavity eigenfrequencies.

Consider the simplest case of matrix B1s.  From the general form of equation (H3) and the

relations of this section,
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Using the easily verified expression

( )
2

1

0

1,

0

1 +
−=

−
= − pp

b

b

b

b

p

p

p

p
(152)

equation (151) reduces to
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Aside from the matrix prefactor, the three eigenvalues are

221 4
2

3

2
, γσσσ +±−=Λ s . (154)

If the only perturbation is a lateral offset ( 0and0 =≠ σγ ), then the eigenvalues are

equally spaced:

γ3,01 ±=Λ s . (155)

If σ is nonzero, then the eigenvalues depend upon both parameters as shown in the

following graph.  For 0=γ  the degeneracy is only partly broken – there are only two

distinct eigenvalues instead of the maximum possible of three.  This appearance of

only 1+p  eigenvalues instead of 12 +p  is characteristic of axisymmetric shape

perturbations.
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In the absence of perturbations other than those described in this section, the measured

frequency splitting for any of the f1s fluid resonances in the cavity is in principle

sufficient for characterizing the cavity in terms of the two parameters σ and γ.  The

measured frequency splitting for any single cavity resonance is usually sufficient.  This

idea is developed more fully as the matrix B2s is now considered.

The matrix B2s for the model perturbation is constructed from the general form equation

(H4) making liberal use of equations (H2), (147), and (150).  Notice that despite the ever-

growing number of cpq parameters that must be included in the calculations, these are

always reducible to the two quantities σ and γ  which (along with the known zpq roots) are

sufficient for computing the entire resonance frequency response.  The result is

σ
γ



39

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) 

































+−+−

+−+−

−−−−

−−++

++−

=

σγ

γσγ

γσγ

γσγ

γσ

ZZ

ZZZ

ZZZ

ZZZ

ZZ

Zs

20530000

530410161500

0161562016150

001615410530

00053020

112

ˆ
2B

(156)
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Expressions for the eigenvalues are rather complicated in spite of the symmetry evident

in B2s.  It is worthwhile to examine some special cases.  First, the axisymmetric case is

determined by 0=γ  for which three unique eigenvalues are found:
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
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


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−
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









−

−
−

=Λ
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1
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2
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2
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2
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2

2

σ

σ

σ

s

s

s

s

s

z

z

z

z

. (158)

The first two listed eigenvalues are doubly degenerate, and the last value is

nondegenerate.  The five eigenvalues sum to zero as expected.

Next consider the special case of high-order overtones ( 1>>s ) for which 12 >>sz .  In

this case it is evident that both Z and Ẑ  approach unity.  The B matrix simplifies to
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
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







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


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
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
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σ
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γσ
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12sB . (159)

Interestingly, this matrix also has only three unique eigenvalues:

( )
( )




















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

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
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++−

=Λ

8

5
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5
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2

σ

γσσ

γσσ
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where the first two values are doubly degenerate and the last value is nondegenerate.

Now if γ is zero in this large s example, the number of unique eigenvalues is further

reduced to two.  This is clearly seen in equation (159).  The values are:

















−
=Λ

8

16

3

2

σ

σ

s (161)

where the first value is doubly degenerate and the second value is triply degenerate.

Next consider the case 0=σ  for which there may still be a lateral offset ( 0≠γ ).  B2s

reduces to the off-diagonal matrix



41

( )
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The five distinct eigenvalues of this matrix are

( )






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

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
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


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And for the limit of large overtone-number, the number of distinct eigenvalues is reduced

to three:



















±
=Λ

16

0

2
γ

s . (164)

Consider the general case eigenvalues of B20 and B24 for the model deformation.  The

following graphs show the eigenvalues for various values of σγ .  For the fundamental

matrix B20, notice the partial degeneracy breaking for 0=γ  and the complete degeneracy

breaking at all nonzero values for γ.  For the overtone matrix B24 the Z-functions are

beginning to approach unity: 010546.1ˆand024351.1 == ZZ .  The following graph

demonstrates that even for this moderate value of s, the highest and lowest

eigenfrequencies are virtually degenerate – the extremal lines are actually two lines that

are not separately resolvable at this scale.  The constant eigenvalue ( 8σ ) remains
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nondegenerate.  Notice also that the eigenvalues for the overtone matrix are significantly

reduced compared to those for the fundamental matrix.
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The model perturbation developed in this section along with the matrix construction

information in Appendices G and H are sufficient for examining specific properties of

eigenvalues up to order 6=l .  Such an analysis becomes increasingly complex and is not

pursued further here.  However, the following summary should suffice to encompass the

important properties of the effects of the model perturbation on the eigenfrequencies of a

spherical cavity.

1. Two hemishells of different but nearly equal radii (described by the parameter β )

yield a cavity shape perturbation that has no effect on the degenerate cavity

resonances.

2. In the general case of nonzero elongation (σ ) and lateral offset (γ ) parameters, the

cavity shape is such that the degeneracy breaking of each resonance is complete.

Each resonance sf l  is split into the 12 +l  resonances msf l
~

.

3. Any single resonance group msf l
~

 is sufficient for determining σ and γ provided that

there are no other cavity perturbations except those described by this model.

4. In the absence of a lateral offset ( 0,0 =≠ γσ ) the number of independent

eigenfrequencies is reduced to 1+l .  This is a special case of the general

axisymmetric treatment given in section V.

5. In the absence of an elongation defect ( 0,0 ≠= γσ ) the number of independent

eigenfrequencies is the full 12 +l .  However the eigenvalues are symmetric about

zero as seen in equations (155) and (163).

6. For moderate to large values of s (higher overtone frequencies) many eigenvalues are

nearly degenerate.  In general ( 0,0 ≠≠ γσ ) the unique eigenfrequencies are

effectively reduced in number to 1+l  as is the case for axisymmetric perturbations

(see #4 above).  For the special cases described above in #4 and #5, the effective

numbers of eigenvalues are reduced to l  and 1+l , respectively.
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V.  MODEL DEFORMATION #2 – AXISYMMETRIC DEFORMATION

This section develops the eigenfrequency calculation for purely axisymmetric

deformations.  Except for the possibility of a specially machined cavity, an axisymmetric

description is unlikely to reflect a strict reality in most cases.  However, this model is

pursued here for two important reasons.  First, the calculations are greatly simplified and

are readily extended relative to the more general cases discussed thus far.  It becomes

important then to understand to what extent an axisymmetric description can be used to

characterize a nonaxisymmetric cavity.  Second, solid hydrogen fuel layers within

spherical ICF cavities will tend to a strongly axisymmetric distribution due to axially

symmetric mounting structures.

A.  Eigenfrequency Calculation

The necessary theoretical framework for describing the eigenfrequencies of cavities with

purely axisymmetric deformations has been developed in Section III.  And some special

cases have been examined with regard to hemishell construction in Section IV.  However,

the full axisymmetric case is now discussed in the present section.

The axisymmetric conditions for the B matrix, equation (106), are mmq ′== ;0  which

lead to the result:

( )∑
=

=
l

l
l ll

2

2

00;
~

even
p

pps
s

mm cmmpCKB . (165)

As before, the 0pc  are the deformation coefficients defined in equation (84), the psK l  are

numerical factors given by equation (107), and the C
~

 are defined in equation (103) and

are tabulated in appendix G as the mm ′=  entries.  The imposed symmetry is such that B

is diagonal and symmetric about mm −→ .  Thus, in general, the eigenvalues of B, s
m
lΛ ,

are the diagonal elements of which there are 1+l  independent values.  The discussions

of hemishell construction deformations for which 0=γ  (section IV) are special cases of
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equation (165).  The full numerical eigenvalues and various approximations are tabulated

in Appendix H for 6≤l .

The degeneracy of eigenvalues is only partially broken from the exact spherical case.

The number of independent eigenvalues is 1+l .  One eigenvalue is nondegenerate and

the remainder are doubly degenerate.  This specific partial breaking is unique among

general deformation classifications.

The numerical coefficients used in calculating the eigenvalues are typically of order unity

or somewhat smaller for the case of fundamental resonances ( 0=s ).  A notable

exception is the identically zero value found in the expression for 20
1±Λ .  This implies that

for each eigenvalue set 0lΛ  the relevant deformation coefficients 0pc  ( l2≤p ) will have

roughly equal computational contributions.  A closer examination reveals that at higher l

values the contributions are diluted for the larger values of p for some eigenvalues.  For

example, the nondegenerate eigenvalues are relatively unaltered by the higher order p

contributions.

B.  A First Method for Computing Deformation Coefficients

Eigenvalue expressions that combine linearity with increasing complexity in l  allow the

calculation of deformation coefficients from a set of eigenfrequencies.  This section

describes one such backward-calculation procedure.

Assume that a set of resonant frequency groups LF  is obtained by experiment

{ } { } { }{ }
LLsssL fff ,,,

21 21 L≡F . (166)

Consider some specific properties of LF .  First, each frequency group consists of 1+l

independent values.  The degeneracy of each individual frequency need not be known.

(Recall that for each set one frequency is nondegenerate and the remainder are doubly

degenerate.)  Second, only a single s value is required for each l  mode, and each s value
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is independent of the others.  Choosing 021 ==== Lsss L  is not necessary but may

prove easiest in practice.  Third, the set of frequency groups must be sequential from

1=l  up to some terminating value 2≥= Ll .  The set LF  uniquely determines (aside

from mathematical accident) the deformation coefficient set PC  given by

{ }04020 ,,,;/ PP cccac L≡C (167)

where P = 2L.  The ratio c/a determines all the unperturbed resonance frequencies

according to equation (30).  The procedure for computing these values follows.  The s-

value subscripts have been omitted for clarity.

Step 1.  Compute the two possible solutions for 2C  given the lowest order frequency set

1F .  The set { }1f  consists of two frequencies, say )1(
1f and )2(

1f .  By assumption the

degeneracies of these frequencies are unknown except for the fact that one must be

doubly degenerate and one must be nondegenerate.  Thus the average frequency (which

determines the ratio c/a) can be either of two values ( ) 32 )2(
1

)1(
1 ff +  or

( ) 32 )2(
1

)1(
1 ff + .  The coefficient 20c  is then computed in each case according to

equation (165) or equivalently equation (H12).  Thus far these two possible solutions are

equally valid.

Step 2.  The set { }2f  consists of three frequencies, say )1(
2f , )2(

2f and )3(
2f .  The average

frequency, however, can only take on one of two possible values corresponding to the c/a

ratios found in step 1.  This constraint is sufficient for determining the specific

degeneracies of the three frequencies given that two must be doubly degenerate and the

third nondegenerate.  Once c/a is determined so is the corresponding value of 20c .

Finally, 40c is computed according to equation (165) or equation (H13).

Step 3.  The average frequency for the set { }3f  is already determined by equation (30).

Thus, the coefficient 60c us now uniquely determined by equation (165) or equation

(H14).

Step 4.  Repeat step 3 stepwise in l  until the full set PC  is obtained.



47

From a theoretical standpoint, this procedure is straightforward and computationally

simple even considering the restrictions and requirements placed on the data.  In practice

its usefulness may be limited by any of several factors: experimental uncertainties;

frequency shifts due to dissipative mechanisms; soft boundary effects; accidentally

degenerate values; etc.

C.  A Second Method for Computing Deformation Coefficients

A second method for computing PC  is now presented.  The required data set LF
~

 is given

by

{ }maxminmax
2

min
2

max
1

min
1 ,;;,;,;/

~
LLL ffffffac L≡F (168)

where the s-value subscripts have been omitted for clarity but follow the same

requirements given for equation (166).  Regardless of the l -value of a frequency set, the

required data are simply the minimum and maximum frequencies.  In each case the

extremal frequencies represent a subset of the 1+l  possible values.  In addition, the ratio

ac / is now known.  The procedure for obtaining PC  is described below.

Step 1.  The first coefficient 20c is uniquely determined by the first extremal frequency

set and ac / .  The extremal frequency subset for this 1=l  case is the full frequency set

of 21 =+l  values.

Step 2.  Compute 40c  from the extremal set { }max
2

min
2 , ff , the known ac /  and the

calculated value 20c  using equation (166) or equation (H13).  This calculation is

noninvertible in the sense that it is not known a priori which of the three

eigenfrequencies, say in equation (H13), will be the extremal two.  Thus, the value of 40c

which fits the data is sought rather than computed.  In general the solution is unique.

Step 3. Repeat step 2 stepwise in l  until the full set PC  is obtained.

Clearly, this second method is relatively computationally intensive because the

deformation coefficient values must be sought through a least-squares fitting routine (or
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other routine of choice).  However, a great advantage to this second approach is the

simplified data set.  In an experimental setting it may not always be easy to obtain all

1+l  frequency values in a given set because of accidental or effective degeneracy.  The

extremal values of a set, however, are readily apparent and accurately determined.  The

drawback of this second method is that ac /  may not be known with sufficient accuracy

(or at all).  This difficulty is explored further in section VII.



49

VI.  DISSIPATIVE EFFECTS

This section extends the acoustic resonance calculations of Section I to include the effects

of several nonideal properties of the fluid and enclosing shell.  These effects manifest

themselves as spectral frequency shifts and peak broadening.  An understanding of these

effects is important for accurately determining derived fluid and shell properties.

This section is organized as follows.  The acoustic admittance of a resonator boundary is

presented in terms of a generalized spherical boundary condition.  Next, spherical

acoustic wave equations are presented which include viscous and thermal properties of

the fluid.  The resonator boundary conditions are then investigated and the thermal and

viscous acoustic admittance is determined.  The enclosing shell is then considered as a

compliant boundary providing an additional contribution to the acoustic admittance.

These effects are considered as additive, and their relative contributions are examined for

several inertial fusion applications.  The theoretical development largely follows that of

Moldover et al. (1986) and draws upon the works of several others cited in the text.

A.  Boundary Condition Formalism

Consider a perfectly spherical cavity filled with a real fluid.  To account for nonideal

boundary effects, assume that in steady-state oscillations all small quantities vary

sinusoidal in time.  Further, suppose that each quantity can be written in terms of the

familiar velocity potential.  Then the Helmholtz equation, equation (20), still holds true,

but the boundary condition, equation (27), does not.  The velocity potential at the

boundary can show a complicated behavior that depends on the physical properties of the

fluid as well as the bounding medium.  It is convenient to write a new boundary condition

in terms of a specific acoustic admittance ( )ωβ :

( ) ( ) ( )aci
r

m

ar

m
l

l ψωβω
ψ

−=
∂

∂

=
(169)
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where the units are chosen so that β  is dimensionless.  The complex prefactor 1−≡i  is

chosen so that the real part of β corresponds to energy dissipation and resonance

broadening and that the imaginary part of β corresponds to resonance shifts.  It is easily

verified using equations (6) and (7) that

( ) ( )
ar

rvpc =•′= ˆ0
rρωβ . (170)

The solution to equation (169) immediately follows upon substitution of equation (22a):

( )
( )

( ) ( )ωβω cai
kaj

kajka
−=

′

l

l . (171)

For the ideal resonator case of Section IA (rigid insulating boundary) the specific

admittance is 0=β , and equation (28) is recovered from equation (171).

B.  Wave Equation for a Viscous Compressible Fluid

This section outlines a derivation of the fourth-order differential equation governing the

acoustic temperature distribution in a viscous fluid.  The derivation itself may not be

particularly enlightening (Kirchhoff first achieved the result in 1868), but it does serve as

an avenue for introducing and discussing important physical constants.

Three equations are useful for the derivation.  The first is the equation of continuity

introduced as equation (9) in section II:

( ) 00 =
∂

′∂+′•∇
t

v
ρρ rr

. (9)

This equation describes conservation of mass in terms of acoustic density and velocity

changes.

The second equation describes the conservation of energy.  Let the temperature

TTT ′+= 0  where 0T  is the ambient temperature and T ′  is the small acoustic

temperature change.  Then
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TK
t

sT ′∇=
∂

′∂ 2
00 ρ . (172)

The proportionality constant K is the coefficient of thermal conductivity of the fluid.

The third equation is the linear viscous-fluid generalization of equation (1) in the absence

of external forces.  It describes the conservation of momentum.  It is written compactly as

( ) ( )vvP
dt

vd
b

rrrrrr
′•∇∇++′∇+′∇−=′ ηηηρ 32

0 . (173)

In this equation η  is the shear viscosity and bη  is the bulk viscosity of the fluid.  The

viscosity coefficients are phenomenological constants describing a fluid’s ability to resist

shear and other mechanisms by which momentum is transferred across a plane tangent to

the velocity.  The bulk viscosity is often related to molecular relaxation in compressible

flow.

Equations (172) and (173) are not derived here in the interest of space.  Excellent

derivations are found in a number of texts, including Fetter and Walecka (1980).  The

following derivation of the temperature distribution equation is straightforward although

it is somewhat involved.  Equations (172) and (173) are subjected to various variable

manipulations until both are written in terms of the independent variables ρ ′  and T ′ .

Then ρ ′  is eliminated between them and the desired equation is the result.  Beginning

with equation (173), note that

( ) ( )vvv
rrrrrrr ′×∇×∇−′•∇∇=′∇2 . (174)

But the cross-product term vanishes identically for potential flow.  Furthermore, taking

( )173•∇
r

, using equation (9) to substitute density for velocity, and invoking harmonic

time dependence ( tie ω ) for all acoustic variables yields the result

0
3

4 2

0

22 =′∇





++′∇+′ ρηη

ρ
ωρω

rr
b

iP . (175)
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Next, a series of thermodynamic manipulations will enable the pressure P ′  to be written

in terms of the density and temperature.  Specifically, with density and temperature as

independent variables, the full differential of the pressure is

dT
T

PdPdP

T ρ

ρ
ρ 






∂
∂+











∂
∂= . (176)

The remaining steps in analyzing this differential are simply listed without discussion in

the sequence below.  The thermodynamic relations are given in Appendix L.

dT
T

PdcdP
V








∂
∂+= ρ

γ

2

( )
( )

dT
PV

TV
dcdP

T

P

∂∂

∂∂−
+= ρ

γ

2

dT
V

V
dcdP

T

T

κ

α
ρ

γ −

−
+=

2

dT
c

dcdP T

γ

ρα
ρ

γ

22
+= . (177)

In these equations c is the adiabatic sound speed, Tα  is the thermal expansion

coefficient, Tκ  is the isothermal compressibility, and γ  is the ratio of specific heats

VP CC .  From equation (177) it follows that the linear acoustic approximation for P ′∇2
r

is

T
ccP T ′∇+′∇=′∇ 2

2
02

2
2

rrr

γ

ρα
ρ

γ
, (178)

and substitution into equation (175) yields the important intermediate result

0
3

4 2
2

02

0

2
2 =′∇+′∇


















+++′ T

cic T
b

rr

γ

ρα
ρηη

ρ
ω

γ
ρω . (179)
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This equation is the first of two that describe the relation between the temperature and

density of a viscous fluid undergoing harmonic oscillations.  To obtain the second

equation, write the entropy as a function of density and temperature and substitute into

equation (172).  Once again, the thermodynamic derivation is listed here with the specific

relations given in Appendix L.

dT
T

sdsds

T ρ

ρ
ρ 






∂
∂+











∂
∂= (180)

dT
T

sd
V

sVds
VT








∂
∂+






∂
∂−= ρ

ρ

dT
T

C
d

T

PVds V

V

+






∂
∂−= ρ

ρ

dT
T

C
d

cVds PT

γ
ρ

γ

ρα

ρ
+−=

2

dT
T

C
d

Vc
ds PT

γ
ρ

γ

α
+−=

2

. (181)

The acoustic time derivative ts ∂′∂ can be calculated with equation (181).  Keeping only

terms linear in the acoustic quantities and invoking harmonic time dependence, it is

readily found that

T
T

CiVci
si PT ′+′−=′

0

2

γ

ω
ρ

γ

ωα
ω . (182)

Now substituting equation (182) into equation (172), the second equation relating the

acoustic temperature and pressure is readily found:

02

000

2

=′∇−′+′− T
T

KT
T

CiVci PT
r

ργ

ω
ρ

γ

ωα
. (182)



54

This equation is not used to eliminate the variable ρ ′  from equation (179).  First note

that (from Appendix L):

( )
0

0
2 1

ρα

γ
α

T

P
T

C
TVc

−
= , (183)

so that equation (182) can be written somewhat more simply as

( ) 01 2
0 =′∇−′+′−− TKTCiCi TPTP

r
γαρωαργω (184)

or, more to the present purpose as

( ) ( )
T

C

Ki
T

P

TT ′∇
−

+′
−

=′ 20

11

r

γω

γα

γ

ρα
ρ (185)

and by inference

( ) ( )
T

C

Ki
T

P

TT ′∇
−

+′∇
−

=′∇ 4202

11

rrr

γω

γα

γ

ρα
ρ . (186)

Finally, using equations (185) and (186) the density terms can be eliminated in equation

(179).  The quick substitution result is

( ) ( )

( ) ( )

.0
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2
2
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


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
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+′
−
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Ki
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Ki
T

T

P
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P

TT

r

rr

r

γ
ρα

γω
γα

γ
ραηη

ρ
ω

γ

γ
γωα

γ

ραω

(187)

Now, gathering terms common in T ′  derivatives and multiplying through by the constant

term ( ) 2
01 cT ραγ − , this equation is simplified somewhat to
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The form and solutions of equation (188) are considerably simplified through the use of

the characteristic viscous and thermal penetration lengths given by
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These penetration lengths represent the distances over which viscous and thermal effects

are transmitted within the bulk fluid.  Typical values are discussed later in the text,

although for derivations in this section, it is assumed that

atv <<,δ , and (191)
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Using the penetration length notation, equation (188) becomes
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This is the equation to be solved through the use of the proper boundary conditions.  It is

first worth noting that once the temperature solutions are found, the pressure and particle

velocity solutions follow readily.  For example, equations (177) and (185) reveal that
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Also, equations (10), (178) and (179) show that
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These solutions describe the coupled density and entropy longitudinal acoustic waves due

to viscous interaction.

In addition there is a second divergence-free solution w′v  satisfying the transverse part of

equation (173)

wwi
rrr ′∇=′ 2

0 ηωρ . (196)

This equation describes purely transverse modes that do not exist in an ideal fluid.  This
expression is quickly solved.  Recasting in the form of the Helmholtz equation,
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rr

(197)

yields the immediate wavenumber solution

2

02 2

v

v
ii

k
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= . (198)

The subscript v on the wavenumber emphasizes the viscous origin of this wave solution.

The new viscous penetration length is defined as

ρω

ηδ 22 =v . (199)

This shear viscosity penetration length is proportional to the viscous penetration length in

the limit of zero bulk viscosity, see equation (189).  The transverse velocity field solution

for a spherical cavity [Morse and Feshbach (1953) eq. 13.1.6] is

( ) ( )[ ] ( ) ( ) ( )[ ]φθφθ ,ˆ,ˆ 21 mvvmv YrkjrrkwYrkjrrww llll

rrrr ×∇×∇+×∇=′ (200)



57

where 1w  and 2w  are independent constants and r̂  is the radial unit normal vector.

Equation (193) can be written as a bi-quadratic and the solution follows fairly readily.

Consider the fourth-order expression

( ) 02 224 =′+∇+∇ Tξχχ
rr

, (201)

where χ and ξ are numeric factors.  The bi-quadratic form

( )( ) 02222 =′+∇+∇ Tkkt ρ
rr

(202)

has solutions

( )ξχ −+= 112
tk  and (203)

( )ξχρ −−= 112k . (204)

By applying this scheme to equation (193) and expanding the results in the small

quantities given by equation (192), it is found that
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The subscripts ρ and t indicate that the two solutions represent the density and entropy

wave solutions in the limit of zero viscosity.  These expressions will be useful later in this

section.  The exact spherical cavity solution of equation (193), arrived at from the

notation of equation (202), is

( ) ( ){ } ( )φθρρ ,mtt YrkjTrkjTT lll ′+′=′ . (207)

The pressure follows from equation (194)
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The transverse gradient function includes all of the angular dependence and is formally

defined in Appendix A.  This equation can be simplified using equations (C22) and (F4)
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The exact velocity expression is cumbersome; it is shown here in terms of the radial and

transverse components.  These follow directly from equation (195)
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The temperature and pressure derivatives for the velocity calculations are given by
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The components of the transverse velocity field, equation (200), can also be constructed.

Using the cross product relations found in Appendix A and equation (C22)
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The first bracketed term in equation (217) resembles the transverse gradient in form.  In

fact, it is the transverse gradient followed by a rotation of the coordinate axes about r̂ .

C.  Viscous and Thermal Boundary Effects

The boundary conditions at the fluid/solid interface are now addressed.  Solutions, using

the velocity, pressure, and temperature equations derived in the preceding subsection,

provide expressions for the acoustic admittance of the boundary, the resonant frequency

shifts, and resonance widths.  The boundary (cavity wall) conditions are three: (1) the

temperature and heat flow are continuous; (2) the tangential components of the total
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velocity are continuous; and (3) the ratio of the normal component of the velocity to the

pressure is equal to the acoustic admittance of the shell.

For typical cavity resonators the temperature continuity condition is very nearly

equivalent to requiring that the acoustic temperature variations vanish at the boundary.

This is best seen by considering the product KC pρ  for both the interior fluid and the

surrounding shell.  Larger values of specific heat per unit volume and thermal

conductivity are characteristic of materials that can absorb and distribute larger amounts

of heat with small changes in temperature.  Thus T ′  at the shell boundary will be very

small relative to T ′  amplitude values within the thermal boundary layer of the interior

fluid provided that

[ ]
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fluidp
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KC

KC

ρ

ρ
τ (218)

The bracketed quantities are tabulated for various materials in Appendices I and J.  In

general ρCpK ~ 1014 for metals, 1011 for solid hydrogens, 1011-1012 for liquids, 1010-1011

for high-pressure gases, and 107-108 for gases.  Thus for all situations of interest τ ~ 103

and equation (218) is satisfied.  This first boundary condition then becomes 0=′T .

Equation (207) evaluated at the boundary then shows that
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The second boundary condition is nearly equivalent to requiring that the total tangential

fluid velocities vanish at the shell wall.  This is true as long as the shell forms a relatively

rigid boundary with respect to the fluid.  This condition is

0=′+′ tt wv
rr

. (220)

A quick look at the equations of the previous subsection shows that this expression has

one term proportional to 1w  and all other terms proportional to ( )φθ ,mtYl

r
∇ .  Thus, the

boundary condition is satisfied if 01 =w  and
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Using equations (213) and (215) to “simplify” this expression yields
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This expression can be simply written as
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The third boundary condition is
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which from the various expressions in this subsection has the following terms:
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The full expression for shβ  is quite complicated.  However, using equation (219) to

eliminate ρT ′ , equation (F4) to eliminate the ( )kajl′′  terms, defining
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and dividing through by all common factors, yields the (still bulky) expression
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This exact expression can be approximated to lowest order in the viscous and thermal

penetration lengths.  The various quantities within equation (230) are given by
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Substituting these expansions into equation (230) yields the very simple expression
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A rearrangement of equation (236) gives the solution to equation (171)
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where the lowest-order thermal and viscous contributions to the acoustic admittance are

defined by
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Specific forms for the shell acoustic admittance shβ  are examined in subsection D.  For

the present discussion, consider several limiting cases for shβ  and the resulting effects on

the complex frequency response.

Case 1.  For 1>>shβ , equation (137) approximates to the pressure-release boundary

condition

( ) 0=akj ρl . (240)

The roots of the Bessel functions, rather than the roots of the Bessel function derivatives,

determine the resonance frequencies.  The thermal and viscous contributions need not be

considered.  They may be small relative to the shell contribution or are also large

themselves.  Either way, their contributions are negligible.  This is also apparent by

examining the amplitudes of the thermal wave tT ′  in equation (219) and the viscosity-

induced transverse wave 2w  in equation (222) which are both proportional to ( )akj ρl .

Many of the lowest-order solutions to equation (240) are given in Appendix D.  The shell

admittance may be large if the interior fluid is very dense, having a total mass

comparable to that of the shell.  This is often the case with liquids and high-pressure

gases contained in a thin-walled cavity.  The shell admittance can also be large when a

fluid mode resonance frequency nearly coincides with a resonance frequency of the shell.

These possibilities are considered in section D on compliant boundary effects.

Case 2.  Consider the case for which all of the admittances in equation (237) are small,

producing only small corrections to the resonance frequencies.  Specifically, consider the

limitation ka<<β .  In this case let

kkk ∆+= 0ρ (241)

where k0 is the wavenumber solution in the absence of viscous and thermal effects.  That

is
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and ∆k is a small wavenumber correction to k0.  An expression in k0 is sought using

equation (237).  Some additional useful expansions are provided by equations (F1) and

(F4)

( ) ( ) ( ) ( )2
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With these expressions, it is found that, correct to order (∆ka)
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As expected ∆ka vanishes in the absence of thermal and viscous effects.  The change in

the complex frequency F can be written as a sum of a real frequency shift ∆f and

dissipative broadening g.  That is

f

ig

ak

ka

f

igf

f

F b+∆=+∆=∆

0

(247)

where gb is the dissipation due to bulk properties of the fluid.  This quantity can be found

in various acoustics texts or can be computed directly from equation (206) as

( )[ ]22

2

32

1 vtb
c

f
g δδγπ +−= . (248)

In equations (247) and (248) the frequency f is taken to be the forcing frequency or free

decay frequency for resonant oscillations.  This first-order approximation is sufficient for

considering the small correction quantities of interest.
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Case 3.  Finally, consider the rigid boundary limits: 0→shβ  and szak l→0 .  From

equation (246) it is readily found that
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And so the change in the complex frequency according to equation (247) is

( )[ ] ( ) ( )[ ]
( )[ ]2

2
22

2

11

11

2

11
s

svt
vt

s

s

s

z

z

a

i

c

f
i

f

F

l

ll

l

l

ll

ll

+−

++−−++−





=

∆ δδγ
δδγ

π
. (250)

The first term is the bulk dissipation of equation (248).  The second term shows that the

boundary effects contribute equally to the real and imaginary frequency shifts.

D.  Compliant Boundary Effects

Mehl (1985) has calculated the acoustic admittance of a fluid-filled spherical shell of

isotropic material.  The analysis is exact taking into account the resonant responses of the

shell as well as the fluid.  The admittance is shown to diverge at resonances of the shell

and is shown to be independent of the index m.  The equations and results are not

reproduced here; instead, a different and more general approach is explored.

Alterman et al. (1959) adapted the elastic equations of motion for an isotropic solid/fluid

of Love (1944) to account for self-gravitation and radial dependence in the material

properties.  Specifically,

( )rρρ = , (251)

( )rλλ = , (252)

( )rµµ = . (253)
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The two independent elastic moduli for an isotropic solid are represented by the Lamé

constants µ and λ.  In standard crystallographic notation µλ 211 +=c  and µ=44c .  The

longitudinal and shear (transverse) sound speeds of an isotropic solid are given by

( ) ρµλ 2+=Lc , (254)

ρµ=Sc . (255)

Equations (251) to (253) guarantee that any such described object has complete spherical

symmetry.  The radial dependence of the functions is arbitrary and thus may include

solids, fluids, and property discontinuities.  The full derivation of Alterman’s equations is

not given here but can be arrived at from the discussions of Love (1944) [see for example

sections 22, 59, and 96].  If the gravitation terms are omitted the equations of torsional

motion are
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where y1 is the amplitude of the shear motion and y2 is proportional to the radial shear

stress.  The boundary conditions are (1) the shear stress y2 must vanish at all solid/fluid

and solid/vacuum boundaries and (2) the displacement y1 is continuous across all solid

boundaries.  In the case of a single solid shell (with or without an interior fill) y2 vanishes

at both inner and outer radii a and b.  Fluids do not support this class of motion, and in

this model any fluids have no effect on the calculations.  These modes can be useful for

the interpretation of cryogenic phase data as described in Section VII.

The equations of spheroidal motion are (again omitting gravitational terms)
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where y1 is the radial displacement amplitude, y2 is proportional to the radial stress, y3 is

tangential displacement amplitude and y4 is proportional to the tangential stress.  The

boundary conditions are that: (1) tangential stresses vanish at solid/fluid and

solid/vacuum interfaces; (2) radial stresses (fluid pressures) are continuous across

boundaries; and (3) displacements are continuous across all boundaries.

The equations of motion for fluid regions follow the spheroidal equations with the shear

constant 0=µ .  In this case there exists only a longitudinal wave speed and the

simplified equations are

( )
321
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(262)
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04 =y . (265)

Given material property functions [equations (251) to (253)], Alterman’s equations can

be numerically integrated in the single dimension r.  Only certain values of the frequency

slωω =  will yield solutions that satisfy the boundary conditions.  With judicious choices

for boundary conditions and material properties, any spherically symmetric solid/fluid

resonator can be modeled.  For example, if a fluid is given a rigid boundary the slω  are

exactly those of Section II.  The resonance frequencies of a solid shell can also be

calculated.  But the great advantage of this method is that real spherical systems, such as

layered capsules important for ICF applications, are solvable.  With this method the

acoustic admittances of all interfaces are inherent in the calculation: the frequency shifts

are computed directly.

E.  Discussion and Examples

The equations developed in this chapter can be applied to a representative National

Ignition Facility (NIF) capsule under a variety of conditions.  The geometric properties

are shown in Appendix M and the relevant thermodynamic and physical properties are

given in Appendices I and J.  Consider the two extreme cases illustrated in Figure M1 (a),

a filled capsule at room temperature and (b), the same capsule beta-layered at a

temperature just below the fuel triple point.  The following tables summarize frequency

shifts and dissipation parameters for several low-order resonances of the interior gas.

Frequencies are computed from equation (30).  Penetration lengths are computed from

equations (189) and (190).  Frequency shifts due to thermal and viscous effects are

computed from equation (250).  Frequency shifts due to compliant boundary effects are

computed by the method of Alterman (1959) outlined in the previous subsection.  The

real part of ∆F is equal in magnitude to the viscous and thermal boundary dissipation.

Specifically, ( ) ( )FiF ∆−=∆ ReIm .
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 Table IV-1 shows the nine lowest frequency resonances associated with the interior gas

of the representative ICF capsule at room temperature.  The cavity radius cma 095.0=

and the frequencies listed in the second column are those for the rigid boundary solution.

The remaining data illustrate most of the essential features related to frequency shifts and

resonance broadening.  Consider the following points:

1. The three characteristic penetration lengths are very small relative to the cavity radius

and decrease with increasing frequency.  Thus, all viscous and thermal dissipative

effects are expected to be very small as well.

2. The bulk dissipation is quite small, showing that there is little acoustic dissipation in

the bulk gas.  The bulk dissipation increases with increasing frequency and

510~ −<fgb  throughout.

3. Viscous and thermal boundary effects, given by ∆F, are generally somewhat larger.

For nonradial fundamental resonances 4105~ −×∆ fF .  Overtone resonances show

less dissipation.  The radial modes also show little dissipation due to the absence of a

viscosity effect.

4. The largest effect comes from the acoustic admittance of the shell.  Generally,

3102~ −×∆ ff sh .  The radial modes work against a uniform expansion of the shell

and thus show less dissipation – the shell appears more rigid.  The 1=l  modes work

against an inertial reactance of the shell (these “sloshing” modes are illustrated in

Appendix E) and behave as a coupled oscillator.  The frequency is increased

according to the expression given by Moldover et al. (1986)
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. (266)

This expression agrees with the numerically calculated values in Table IV-1.  The

increase has been observed experimentally in unpublished work by the author.

5. The lowest elastic resonance frequency of the shell occurs at about 1600 kHz.  For

gas resonances in the regions of shell resonances, ∆fsh can be calculated accurately

but can vary unpredictably.  This effect is already seen in the table which predicts

(∆fsh)11 = +1275 Hz while equation (266) predicts (∆fsh)11 = +1550 Hz.
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Table VI-1.  Energy dissipation examples for the representative ICF capsule at room

temperature

mode f vδ vδ tδ bg ( )F∆Re shf∆

s,l kHz µm µm µm Hz Hz Hz

1,0 348.7 0.51 1.43 0.53 1 -150 +7447

2,0 559.9 0.39 1.13 0.42 2 -240 -1805

0,1 752.8 0.33 0.98 0.36 4 -57 -423

3,0 756.3 0.33 0.98 0.36 4 -330 -2152

4,0 946.0 0.30 0.87 0.32 7 -420 -2197

1,1 995.2 0.29 0.85 0.31 7 -78 +1275

5,0 1132 0.27 0.79 0.29 9 -510 -1907

2,1 1221 0.26 0.76 0.28 11 -102 -4140

0,2 1294 0.25 0.74 0.27 12 -74 -840
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Table IV-2 shows the nine lowest frequency resonances associated with the interior gas

of the representative ICF capsule at 20 K.  The cavity radius cma 087.0= .  This smaller

cavity radius (compared to that of the room temperature capsule) is due to the presence of

an 80-µm-thick solid DT fuel layer.  The frequencies listed in the second column are

those for the rigid boundary solution.  The remaining data illustrate most of the essential

features related to frequency shifts and resonance broadening.  Consider the following

points:

1. The characteristic penetration lengths are small relative to the cavity radius and

decrease with increasing frequency.  The viscous penetration length is noticeably the

largest with a maximum value 079.0≈avδ  for the lowest frequency mode.  This is

due to the large (and relatively uncertain) bulk viscosity for the low-density DT gas.

2. The largeness of δv carries over into the values for the bulk dissipation bg .  The

frequency dependence is strong, so that over the range of data ( ) 007.010 =fgb  and

( ) 026.002 =fgb .

3. The viscous and thermal boundary effects are of similar magnitude to that of the bulk

dissipation.  The radial and overtone modes are less strongly influenced, just as was

noted in the room temperature case.  For the fundamental nonradial modes

04.0~/ fF∆ .

4. The shell admittance effects, which now include both the beryllium outer shell and

the DT solid inner shell, are somewhat smaller or the same order of magnitude as the

viscous and thermal boundary effects, 002.0≈∆ ff sh .  The inertial reactance effect

for the 1=l  modes is very small and is not apparent in the data.  Thus, the shell

admittance is likely more affected by proximity to elastic resonances in the solid DT

or through complicated triply coupled oscillator effects.
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Table VI-2.  Energy dissipation examples for the representative ICF capsule near the

triple point of DT

mode f vδ vδ tδ bg ( )F∆Re shf∆

s,l kHz µm µm µm kHz kHz kHz

1,0 87.58 8.1 69 7.8 0.60 -3.46 -0.16

2,0 140.6 6.4 54 6.1 1.53 -5.68 -0.27

0,1 189.1 5.5 47 5.3 2.81 -0.38 -0.36

3,0 189.9 5.5 47 5.3 2.85 -8.28 -0.36

4,0 237.6 4.9 42 4.7 4.45 -10.8 -0.45

1,1 249.9 4.8 41 4.6 4.94 -0.82 -0.48

5,0 284.3 4.5 38 4.3 6.24 -13.3 -0.54

2,1 306.7 4.3 37 4.1 7.43 -1.37 -0.58

0,2 325.0 4.2 36 4.0 8.37 -0.49 -0.62



74

Comparison of the two ICF capsule cases shows that shell admittance effects dominate

the frequency shifting and dissipation at high pressures, whereas at low pressure and

temperature, no particular mechanism dominates.  The Q of a resonator is a good measure

of the combined dissipative effects.  It can be defined as the ratio of the resonance

frequency to the full-frequency width at half response-maximum for any measured

resonance peak.  If bg  is small relative to thermal, viscous, and shell effects then Q is

given approximately by

f

f
Q

∆
≈

2
. (267)

The dissipation is fairly large for the cryogenic capsule so that 50≤Q  is the rule.  In

contrast 500~Q  is typical for high pressures at room temperature.

Consider a final example of an aluminum capsule (cavity radius 10 cm, shell thickness

1.0 cm) filled with one standard atmosphere of air.  This case simulates laboratory

settings that use spherical resonators to investigate gas properties.  While the

experimental details differ in excitation and detection of sound (as well as scale), it is

interesting to consider the theoretical dissipation.  Table VI-3 shows a compilation of the

data.

The lowest-frequency shell resonance is at 5533 Hz, and the lowest frequency radial

resonance is at 13.4 kHz.  The table shows that the dissipation mechanisms are like those

of the high-pressure room temperature ICF capsule example.  The dominant dissipation

comes from the shell admittance followed by the boundary effects.  Careful consideration

of these small effects has allowed experimenters to measure gas properties to a relative

accuracy approaching 10-6.  At this level of achievement it is also necessary to consider

the effects of small cavity perturbations such as fill holes, seams, and other cavity

boundary modifications.

The somewhat large positive values for the frequency shift due to the acoustic admittance

of the shell (last column of Table VI-3) are of some concern.  Equation (266) predicts a
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shift of only +0.7 Hz for the low-frequency mode and less for the first overtone.  It is

probable that the table values represent the numerical calculation uncertainty rather than a

physical effect.  This should not be surprising or be taken as a weakness in the theory.

The calculations were made using code designed for MHz resonances of millimeter-sized

objects.

Table VI-3.  Energy dissipation examples for an aluminum capsule filled with one

standard atmosphere of air.  The cavity radius is 10 cm and the shell thickness is 1.0 cm

mode f vδ vδ tδ bg ( )F∆Re shf∆

s,l Hz µm µm µm Hz Hz Hz

1,0 1126 65 91 78 0.0013 -0.64 +3

2,0 1808 51 71 61 0.0033 -1.0 +3

0,1 2432 44 62 53 0.0061 -0.26 +3

3,0 2443 44 61 52 0.0060 -1.4 +3

4,0 3056 40 55 47 0.0095 -1.8 +4

1,1 3214 39 54 46 0.011 -0.35 +5

5,0 3656 36 50 43 0.014 -2.2 +5

2,1 3945 35 48 41 0.016 -0.45 +5

0,2 4180 34 47 40 0.018 -0.33 +6
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VII.  APPLICATION DISCUSSIONS

This section is dedicated to discussions of specific measurement and data interpretation

issues relevant to the characterization of ICF capsules.

A.  Vibration Detection Sensitivity

Many of the applications important to the ICF effort rely on accurate detection of

acoustic resonances of the gas within a closed shell.  These resonances are accompanied

by shell motion as described in Section VI.  Because the energy mainly exists in the

interior the shell vibration amplitude can be quite small compared to the gas particle

displacements.  Detection of these modes is not simply a matter of exciting larger

amplitude motion.  It is important to keep the acoustic vibrations at a level for which the

linear formalism is still applicable.  Nonlinear effects can include increased energy

dissipation and large resonance shifts.  Consider then the following calculations which

relate the acoustic pressure amplitude in the gas to the shell displacement at the outer

surface.

Working with the rigid boundary equations as a good approximation for the cases of

interest, the pressure in the gas for the radial modes is

( ) ti
s erkjPP

PPP

ω
000

0

+=

′+=
(268)

where P  is a constant.  The radial mode expression and the results that follow are

assumed to be representative of other resonances.  It also simplifies the calculation.  From

Section I it follows that the particle velocity is

( ) rerkj
ci

Pv ti
s ˆ00

ω

ρ
′−=r . (269)

Also, the particle displacement is



77

( ) rerkj
c

Px ti
s ˆ00

ω

ρω
′=r . (270)

Now the maximum gas-particle displacement x* is given by the maximum absolute value

of equation (270):

( )*
00

*
szj

c

Px ′=
ρω

, (271)

where the z* are the values that yield the extremum in the Bessel function derivative.

Now the maximum acoustic pressure in the cavity P* occurs at the cavity boundary.

Thus, by equation (268)

( )szjPP 00
* = (272)

where the sz0  are the familiar roots given by equation (29).  That is caz ss 00 ω= .  Thus,

the ratio of the maximum acoustic pressure to the ambient cavity pressure is
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All that remains is to relate x* with the shell displacement amplitude at br = .  This can

be accomplished using the numerical calculations of Alterman (1959) outlined in Section

VI.  Each mode yields different results, so it is useful to write the expression

bs xx α=* , (274)

where αs is the calculated constant.  It is also reasonable to assume the low-density gas

expression γρ 2
0 cP =  for cryogenic capsules.  With these substitutions, equation (273)

is written simply as

( )
( ) a
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zjz
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s

ss
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00
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0

*

′
= αγ . (275)

Finally, if the Bessel function fraction is written as sJ  and the pressure ratio as P̂  then

the shell surface displacement is expressed as
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ss
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αγ

ˆ
= . (276)

Table VII-1 shows the results for the representative NIF capsule near 18K, however,

deuterium was used as the fuel.  The specific heat ratio 66.1=γ  and the cavity radius is

0.087 cm.  P̂  is taken to be 0.01, and other values for xb are proportional to the choice of

P̂ .

Table VII-1

0=s 1=s 2=s

sα (106) 1.65 1.61 1.59

sJ 2.24 5.90 9.17

bx  (pm) 1.4 0.55 0.36

Table VII-1 shows that the gas particle amplitude is very large compared to the shell wall

displacement.  Furthermore, picometer (10-12 m) shell vibration amplitude is the limit for

maintaining a linear acoustic description of the gas acoustics.  Vibration detection

systems with this capability fall into the regime of optical interferometry.

It is expected that the response of spheroidal modes would be comparable to somewhat

larger than that shown in Table VII-1 – although for these modes the amplitude response

varies over the surface of the shell.  This analysis ignored viscous and thermal damping

effects.  Inclusion would allow xb to be somewhat larger but still in the picometer range.

For gases at higher pressures the maximal amplitude restrictions are considerably relaxed.

For example, the room temperature NIF capsule can have xb = 3 µm for 01.0ˆ =P .  When

computing results for these higher pressures, equation (276) can still be used with the

caution that γ  can vary from its low-density value 0
2 Pcρ .
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B.  Pressure and Density

The pressure and density of a fluid enclosed in a spherical cavity are calculated quantities

based upon a suitable equation-of-state (EOS) and measurements of sound velocity and

temperature.  To see how this might work, consider the general EOS

( )TPP ,ρ= (277)

and the corollary relation

( )TcPc

S

,ρ
ρ
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



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




∂
∂= . (278)

These equations can in principle be inverted (or in practice numerically evaluated) to

obtain the expressions

( )TcPP ,=  and (279)

( )Tc,ρρ = . (280)

Measurement of the sound velocity is a fairly straightforward evaluation of the resonance

spectrum based upon the basic equation (30) and the inclusion of cavity boundary

dissipation effects [real part of equation (250)] and the compliant shell effects [calculated

as described in Section VI-D].  Tables VI-1, VI-2, and VI-3 demonstrate that typically

these dissipation effects can be ignored if a sound velocity within 0.5% is accurate

enough and if the acoustic mode frequencies are significantly less than all elastic shell

mode frequencies.  This is especially true if the lowest frequency acoustic mode is

ignored.

In addition, the resonance frequency set might be expected to show broken degeneracies

due to small perturbations in the cavity shape.  Two simple methods are given here for

addressing broken degeneracy.  Consider one frequency set

{ } { }1221 ,,, += l
llll K ssss ffff (281)
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of which some or all of the frequencies are known.  Often the degeneracy is only partially

broken so that all of the frequencies cannot be known by inspection.  For sound velocity

computations consider either

2

minmax
ss

s
ff

f ll
l

+= (282)

which is the average of the extremal frequencies of the set, or

obs

obsk

k
s

s
n

f

f
∑
==

l

l
(283)

which is the average of all observed frequencies.  Either equation will yield similar

results and the maximum possible error is

( )minmax

24

12
ss

err
s fff lll

l

l −
+
−≤ (284)

which can approach half the frequency range at large l .  Typically, the uncertainty will

be much less than indicated by equation (284).

Once the resonance frequencies are obtained by equation (282) or (283) and dissipative

corrections are applied, the sound velocity can be computed using equation (30).  Only

one resonance is required to complete the calculation although use of several resonances

is recommended.  If N is the number of resonances to be used, the sound velocity is

∑=
s s

s

z

f

N

ac
l l

lπ2 . (285)

The pressure and density are then given by equations (279) and (280).  The resonant

frequencies are typically known to within 0.5% without dissipative adjustments.  The

uncertainty in the cavity radius is often of the same order of magnitude except in

carefully constructed experiments.  If a is not known, then the density can be

independently determined in cryogenic experiments which measure the temperature at

which the cavity contents reach the saturation curve.  This technique is described in

Section VII-D.
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If greater accuracy is desired for the sound velocity the following iterative procedure

should be used.  Consider the frequencies used above as the first-order estimates )1(f .

These frequencies yield the first-order values )1(c  and )1(ρ .  These values along with

other physical property data can be used to compute the first-order dissipative frequency

shifts )1(f∆  according to Section VI.  The second-order frequencies are then

)1()1()2( fff ∆+= .  This new set of frequencies can then be used to find the second-

order values )2(c  and )2(ρ .  This process is continued until the values converge.

Remember that )1()1()( −∆+= nn fff  and not )1()1()( −− ∆+= nnn fff .

One other method of determining the interior fluid density of a room temperature ICF

capsule is next described.  While the accuracy appears to be limited to about 5% for the

hydrogens, it is given here because of its simplicity.  Using the first one or two radial gas

modes the frequency f10 can be estimated using equation (30).  Small but important

refinements can be made from approximate values for the density, viscosity, etc. and

computing approximate values for the dissipative frequency shifts.  This computed value

of f10 and the measured value give the gas density through equation (266).  Notice that

this method is independent of any EOS.

C.  Isotope Ratio Determination

Measurement of the sound velocity can be used to measure the isotope ratio of a simple

binary gas mixture at low density.  Assuming the accuracy of the EOS expression

M

RT
P

ρ= (286)

where  M is the molecular weight of the gas mixture, the sound velocity is

M

TR
c

γ=2 . (287)
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Now let M1 and M2 be the molecular weights of the lighter and heavier isotopes

respectively.  Then the mole fraction of the lighter isotope x1 is

12

1
2

1
MM

M
c

TR

x
−

−
=

γ

. (288)

The relative uncertainty in x1 is due to the uncertainty in c.  It is

c

c

MM

M

x

x δδ 2

121

1

−
= . (289)

Equation (289) shows that the relative uncertainty in the mole fraction is twice the

uncertainty in the sound speed multiplied by a molecular weight prefactor.  This ratio can

be very large for heavy isotopes, rendering this acoustic isotope analysis impractical.

However, the case of greatest interest to the fusion energy community is mixtures of

deuterium and tritium.  In this case the prefactor is ~ 4.5 and an uncertainty in the sound

speed of 0.5% translates into about a 5% uncertainty in the mole fraction.  This may be

acceptable for some applications.

High-pressure gases that do not necessarily obey equation (286) may still be evaluated in

this manner as long as an effective γ  is known for the density and temperature of interest

and does not differ between isotopes.  In other terms, for isotopes at a fixed temperature,

the sound velocity can be expressed in the form of equation (287) provided that

21−∝ Mc .  This condition is satisfied by hydrogen and deuterium to within the

uncertainty of known EOS (0.6%) up to 400 atm pressure at 300 K.  It is reasonable to

assume that DT mixtures should provide similar results.

D.  Phase of Interior Cavity Contents

Several possibilities exist for acoustic observation of phase changes and the phase state of

the interior fluid of a spherical cavity.  Many of these measurements can be useful for

ICF capsule experimenters.  Discussion of the distribution of solid hydrogen is deffered

to later sections.  Consider the following:
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1. Coexistence Curves

Typical ICF capsules are filled with high-density hydrogen isotope fuel mixtures.  When

these capsules are cryo-cooled the contents will undergo phase separation as contact is

made with the coexistence curves.  As an illustration, consider the P-T phase diagram of

deuterium shown below.  This plot displays the coexistence curves as solid lines.  The

triple point (TP) is at the intersection of these curves and the critical point (CP) is at the

high-temperature end of the liquid/vapor curve.  Several constant-density cooling curves

are shown as dotted lines.  Because an ICF capsule cavity maintains a nearly constant

density of fuel, these lines are indicative of potential cooling paths.

The deuterium densities (in mg/cm3) associated with each path are (A) 180; (B) 174; (C)

100; (D) 67.7; (E) 4.0; (F) 0.455; (G) 0.20.  Curves B and F are of density such that the

thermodynamic path first reaches a coexistence curve at the TP.  Curve D represents the
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critical density path.  The representative ICF capsule has a fill density near 48 mg/cm3

and its path lies just below that of the critical density path.  It reaches the liquid-vapor

coexistence curve in a manner similar to curve E but at a temperature of about 38.1 K.

Consider the specific example of curve E.  The density of deuterium gas in the cavity is

4.0 mg/cm3 at all temperatures (ignoring thermal contraction of the shell).  At room

temperature this corresponds to a pressure of 24.6 atm.  Cooling the capsule to 50 K

reduces the pressure to 4 atm – this is where the curve enters the right side of the graph.

Further cooling results in additional lowering of the pressure until the liquid-vapor

coexistence curve is reached at about 27 K.  At this point liquid begins to condense out of

the gas.  Upon further cooling, the path runs along the coexistence curve.  The volume

ratio of liquid to gas is determined by the densities of the individual phases and by the

total density constraint.  Cooling to the TP temperature (TTP = 18.73 K) results in the

beginning of deuterium solidification.  Additional cooling results in a path along the

solid-vapor coexistence curve, and aside from the possibility of supercooling, the cavity

contains solid and vapor in equilibrium.  Any warming or cooling of the capsule results in

a movement in this thermodynamic space only along the curve E and the coexistence

curves just described.

Acoustic techniques can be used to accurately map the liquid-vapor coexistence curve.

Two possible techniques are now described.  First, a single capsule of known (or

measured) fill density between 0.5 and 67 mg/cm3 is cooled to a temperature just above

that where it will reach the coexistence curve.  The specified density range guarantees

that the contents will be gaseous (curve E falls in this range).  As the temperature is now

slowly lowered the sound velocity and resonance frequencies are also lowered.  At the

point where liquid begins to condense into the cavity the measured sound velocity and

resonance frequencies will increase.  This is due to an effective cavity volume reduction

by the presence of liquid.  The temperature at which the sound velocity is at minimum is

the location of the coexistence curve for the known density.  Calculations of this effect

using known EOS and coexistence curve data suggest that this method can be accurate to

within a few mK (within a few degrees of the critical point temperature).  One possible
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difficulty of this technique is the potential appearance of a precondensation effect –

condensation of liquid at slightly higher temperatures induced by acoustic fluctuations.

Interestingly, this effect is minimized by having smoother surfaces, having small surface-

to-volume ratio cavities, and by using shells of high thermal conductivity – all desirable

properties of ICF capsules.  Even if all of these effects can be sorted properly, there is

still only one point along the curve that can be measured by any given capsule.

A modified version of the above scenario is to use a spherical shell with a cavity in

communication to a small warm volume via a fill tube.  In a nonacoustic experiment,

pressure and temperature data can be obtained for small regions of the liquid-vapor

coexistence curve.  Because the thermodynamic path is no longer one of constant density,

pressure, or temperature, care must be taken to ensure that the PT data actually represent

a state along the coexistence curve.  That is, the capsule is partially full of liquid and this

liquid is in equilibrium with the vapor.  In practice, the beginning of the cooling curve

path would look very similar to curve E in the graph, then travel some distance down

along the coexistence curve as the capsule fills, and finally leave the coexistence curve to

the left into the liquid region when the capsule is full.  This method has been used to

examine the coexistence curve of deuterium in unpublished work by the author.

2. Other Liquid and Solid Detection Methods

For cavities filled with either liquid or solid, the methods described throughout this work

can accurately characterize the material.  The case of a cavity filled with solid is

accurately treated by the methods of Alterman (1959) outlined in Section VI-D provided

that the two solid materials are mechanically isotropic.  A fluid-filled spherical shell is

treatable using the same methods given throughout this report for gases.  Care must be

taken, however, to consider the possibly large shell-admittance, viscous, and thermal

boundary effects.

Of greater interest for the present work is the consideration of detecting mixed phases

within the cavity.  The method already mentioned in the previous subsection relies on

measurement of gas resonance frequency shifts due to effective cavity volume changes.
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However, the presence of liquid or solid condensed from the vapor will also affect the

resonance frequencies of the enclosing spherical shell.  The essential point is that a small

amount of liquid or solid will provide a small mass-load shift to the shell resonances.

Because 21−∝ massf  it is quickly computed that a 400-Hz frequency shift of a 1.6-MHz

resonance corresponds to about 1% of the gas mass in an ICF capsule.  With care, one

might practically expect to be able to detect frequency shifts at just about this level.  This

1% gas mass corresponds to a spherical solid mass of radius 210 microns or a spherical

liquid mass of radius 220 microns.  Spread over the inner surface of the shell this quantity

is a layer about 4 microns thick.

The toroidal modes of the shell, characterized by transverse motion only, can only couple

motion into the fluid through viscous effects.  It can be expected that only the liquid

quantities within about a viscous penetration length of the shell will provide a mass load

to the resonance motion.  From equation (189), 21−∝ fvδ , so that for the lowest

frequency torsional mode of an ICF capsule (2.77 MHz) at cryogenic temperatures (see

Table VI-2), mv µδ 12≈ .  For all practical purposes, the detectable fluid quantities mass

load the low frequency torsional and spheroidal modes.

Detection of small quantities of liquid or solid is likely limited to 1% of the total cavity

mass through the method of observing shell resonance frequency shifts due to mass

loading.

3. Supercooling

It is possible that carefully manufactured and highly polished capsules may allow the

liquid contents to supercool as the temperature is slowly lowered through TTP.  This

phenomenon has been visually observed with DT mixtures in translucent polymer

capsules.  In an unknown isotope mixture (unknown TTP) it is not clear when

supercooling has occurred.  It will be acoustically evident, however, when the mixture

does freeze.  It will freeze very quickly and completely, inducing a sudden shift in the

shell resonance frequencies.  If the mixture froze from the vapor, the shift would also be
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large – on the order of tens of kHz.  Because the mixture freezes from the liquid, the

spheroidal shell resonances are significantly mass loaded both before and after freezing.

The torsional modes are less significantly mass loaded, and the resonance shifts due to

sudden freezing may be as large as several kHz.  The author has observed freezing shifts

on the order of 5 kHz for a 180 kHz resonance of a deuterium-filled aluminum capsule.

Such frequency shifts are not expected to be quantitatively reproducible for they may

depend largely on the exact nature of the quick freeze.  More or less solid may be

mechanically attached to the shell each time the liquid is frozen; there is no guarantee

that the freeze will occur in any organized fashion.

4. Triple Point Measurement

In the absence of supercooling the measurement of TTP is straightforward.  At

temperatures just above TTP the resonance signature of the capsule is that of a fluid

loaded shell.  Small changes in temperature will not change the resonance spectrum to

any measurable degree.  Now if the temperature is lowered below TTP the liquid will

begin to freeze.  The rapidity of the freeze depends upon proximity to the TP but usually

occurs in seconds to a few minutes unless the temperature happens to be within a few mK

of TTP.  When complete, this freeze will manifest itself in a shift in shell resonances that

would not otherwise occur.  The mass load to the shell becomes somewhat greater, and

the fuel distribution will be to some degree more even around the cavity interior.

The effects on the resonance spectrum are threefold.  First, the nearly-degenerate peaks

within any resonance group will tend to reorient relative to each other due to the change

in symmetry.  In fact more peaks may be evident because the solid is not likely to be as

symmetric a mass as a pool of liquid.  Second, the overall breadth of the resonance group

may decrease if the solid freezes with more polar symmetry than a liquid pool.  Third,

each resonance frequency group may show a downshift due to the better mass coupling

property of the solid over the liquid.  These effects are all subtle but within the capability

of careful resonance measurements.
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If supercooling is observed then the TP can be found by the reverse procedure.

Supercooling is induced and then the temperature is incrementally raised until the liquid

transition is observed with all of the characteristics just described.

E.  Cavity Boundary Characterization

While the overall structure of the cavity resonance spectrum reveals information on the

physical properties of the contained fluid or solid, the fine structure reveals information

on the shape of the cavity.  Some aspects of this fine structure interpretation have been

discussed in Sections III through V.  The present discussion seeks to encapsulate these

previous ideas and present workable data inversion techniques.

A quick review of the resonance fine structure reveals the following properties:

1. A spherical cavity is characterized by a resonance spectrum whose experimental

resonances sf l  [given by equation (30)] have degeneracy 12 +l .  This degeneracy is

experimentally indistinguishable.  Fine structure is not present.  These properties are

due to the high degree of symmetry of a spherical object.

2. Any alteration of the spherical symmetry of the cavity (distortions, defects, etc.) will

induce breaking of the degeneracies of the resonance frequencies.  Typically, defects

of high symmetry will induce only partial degeneracy breaking while defects of low

symmetry can induce complete degeneracy breaking.

3. To first order in a boundary perturbation theory, degeneracies are affected only by

even-order boundary defects.  The fine structure is indicative of only even-order

distortions of the cavity.

4. To first order in a boundary perturbation theory, the mean resonance frequency of any

fine structure group is unchanged.  This also applies to the nondegenerate radial

resonances.

5.  The degree of degeneracy breaking (frequency shifting) is linear in the perturbation

parameters.
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6. Axisymmetric perturbations induce a partial degeneracy breaking that results in 1+l

experimentally detectable resonances in the fine structure group.  This property is

unique among all possible general perturbations.

7. A perturbation of even-order p [see equation (39) or equation (84)] affects all

resonances of order 2p≥l .  A resonance of order l  is only affected by even-order

perturbations l2≤p .

8. A general perturbation of order p is described by 1+p  parameters pqc  where

{ }pq ,,1,0 L∈ .  The fine structure of a resonance of order l  is described by 14 2 −l

parameters.

Even from a theoretical standpoint, the task of inverting frequency data into cavity shape

information is daunting.  The greatest analysis hurdle and the focus of much of the

following discussion is centered on point 8 above: computing a large number of

deformation coefficients from a limited set of resonances.  Points 2, 4, 6, and 7 describe

helpful analysis limitations that make the task manageable in many situations.  Additional

difficulties associated with resonance Q’s and cryogenic measurements are deferred to

the next subsection on solid fuel distribution.  For the present, assume easily detectable

high-Q resonances.

The inversion task is to find the deformation coefficient set that describes a nearly

spherical cavity based upon the resonance spectrum (coarse and fine structure) of a fluid

filling the interior.  Let this inversion operation be denoted W such that

{ } { }pq
h
s cf →lW , (290)

where it is understood that: p is even; { }pq ,,1,0 L∈ ; l and s identify the unperturbed

cavity resonance; and { }lLLl +−∈ ,,0,,h  enumerates the fine structure frequencies.  A

consideration of the lowest-order fine structure group hf10  illustrates the essential

difficulties of the inversion operation.  For this case the operation given by

{ } { }222120
1

10
0

10
1

10 ,,,, cccfff →−W . (291)
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At first glance the solution seems clear: given the frequencies and point 4 above, equation

(104) is used to solve for the three perturbation parameters.  But even in this simple case

the solution is not unique, for only two parameters are required to describe three

frequency shifts whose average remains fixed.  The situation is only exacerbated by

inclusion of more frequencies.   Three routes to a unique solution suggest themselves.

1. Coefficient Reduction by a priori Knowledge

It may be possible to use additional experimental information to reduce the number of

perturbation coefficients.  This is the likely case for cavities constructed from hemishells.

The 1=l  operation becomes

{ } { }2120
1

10
0

10
1

10 ,,, ccfff →−W (292)

which has a unique solution.  Equation (292) is equivalent to equation (154).  Even better,

the general hemishell construction operation is also uniquely solvable due to the

significant reduction of necessary perturbation parameters

{ } { }γσ ,0 →hf lW . (293)

Notice that it is only necessary to use the lowest-order frequency to obtain the

coefficients.  For this special case 20211 ccc p ∝∝  so the problem is actually

overspecified – see Section IV-E.  Other coefficient reduction schemes may also prove

useful, but it would be difficult to categorize the possibilities.  Remember, almost any

reasonably defendable coefficient reduction will lead to a unique solution, thus it is worth

the mental effort to closely examine the particular experiment of interest.

2.  Incorporating Overtone Frequencies

The 1=l  problem can also be solved through the use of overtone frequencies.

Specifically,

{ } { }2221201110 ,,, cccff hh →W (294)
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does, in general, have a unique solution.  The use of the first overtone as well as the

fundamental frequency provides the additional information necessary for uniquely

determining the full coefficient set.  In fact,

{ } { }pq
hh cff →10 , llW (295)

also has a unique solution.  In principle this solves the difficulty of having too many

unknowns.  In practice, the use of the overtone frequencies can be inhibiting.  They are of

significantly higher frequency and thus subject to any number of detection difficulties.

3. Axisymmetric Solutions

Again considering the 1=l  problem, assume a (possibly unrealistic) axisymmetric

perturbation ( 0,0 2221 == cc ).  In this case there are only two distinct frequencies of

which the degeneracy is indeterminate.  The unperturbed frequency now becomes one of

the parameters to be found

{ } { }1020
1

10
0

10 ,, fcff →W . (292)

While the solution of equation (292) is still not unique, there are only two possible

solutions based upon two possible degeneracy scenarios of the experimental frequencies.

Inclusion of a radial mode frequency and higher-order frequencies renders a unique

solution.  That is

{ } { }000 , p
h

s cff →′
lW (292)

where { }lL,,1,0∈′h  indicates the reduced set of frequencies within a fine structure

group.  Recall that for axisymmetric perturbations the group consists of at most 1+l

resonances.  Details of this particular method and its usefulness are discussed later in this

section.

The three scenarios above, while differing in the details of useful frequencies and

coefficients, follow a general solution recipe W.  The procedure is as follows:
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1. Using the lowest-order 1=l  frequency group { }hf10  or groups { }h
sf1 , calculate the

lowest-order deformation coefficients { }qc2 .  This is accomplished by the B1s matrix

formalism of Section III-E.

2. Using the 2=l  frequency group(s) and the just computed 2=p  coefficients,

calculate the 4=p  coefficients { }qc
4 .  This is done with the B2s matrix.

3. Continue to increment l  so that the L=l  frequency group(s) { }h
Lsf  along with the

22 −≤ Lp  coefficients { }qLqq ccc ,2242 ,,, −L  are used to compute the next coefficient

set { }qL
c

,2 .

It is important to note that this procedure requires a full set of frequencies L,,2,1 Ll =

that begins with 1 and runs up to some maximum value L without any gaps.  Consider a

simple numeric example of an axisymmetric cavity.  Let the data set consist of the

following “experimental” frequency information (given in Hz ):

75275001 =f

{ } { }351350,34745010 =hf

{ } { }566500;556450;55365020 =hf

{ } { }761300;760800;750450;74745030 =hf

Viscous, thermal, and shell admittances can be incorporated into the analysis but will not

be done here in the interest of clarity.  Each frequency set consists of 1+l individual

frequencies, each of which is doubly degenerate except one that is nondegenerate.  Which

frequency in a set is nondegenerate is not known a priori but is calculated using the radial

resonance.  This is the first task and quickly reveals f10 = 348735, f20 = 559915, and f30 =

756266.  The experimental eigenvalues of B10 are then

( ) 003685.01010
0

10 −=− fff

( ) 007499.01010
1

10 +=− fff .

Because the eigenvalues must sum to zero, the second frequency 1
10f  is the

nondegenerate value.  These two eigenvalues give an average value for the coefficient

0129.020 +=c .  Next, the experimental eigenvalues of B20 are
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( ) 01118.02020
0

20 −=− fff

( ) 006176.02020
1
20 −=− fff

( ) 01177.02020
2

20 +=− fff .

Again the condition that the eigenvalue sum be zero identifies the nondegenerate

frequency as 0
20f .  These eigenvalues and the coefficient 20c  determine the average value

of the next deformation coefficient as 0210.040 −=c .  The next experimental values of

B30 are

( ) 01166.03030
0

30 −=− fff

( ) 007690.03030
1
30 −=− fff

( ) 005995.03030
2

30 +=− fff

( ) 006656.03030
3

30 +=− fff .

The zero eigenvalue sum condition identifies the nondegenerate frequency as 0
30f .  The

average value of the last deformation coefficient is 0095.060 −=c .  The actual

coefficients upon which the frequency data were originally calculated are

0090.0,0210.0,0130.0 604020 −=−=+= ccc .  This quick example shows that the

coefficients are recoverable as long as great care is taken in the frequency measurements.

The “data” are given to within the nearest 50 Hz and yet the 60c  coefficient is off by six

percent.  Although the solution is unique in the case of zero uncertainty, the uncertainty

tends to grow significantly with each step.

A general solution for extracting deformation coefficients of a nonaxisymmetric cavity,

while possible in principle, is somewhere between cumbersome and impossible in

practice.  Difficulties include distinguishing up to 12 +l  eigenfrequencies within a

group, accounting for degeneracies, and utilizing several different s-value modes for each

l -value.  Even the simplest case for which 1=l  is not readily solved.  The axisymmetric

deformation coefficients, however, are readily obtained by the method and example just

described.  In many cases involving regular geometries (such as ICF target mounting

structures), it is likely that capsules and fuel layers will be nearly axisymmetric and the
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methods described above will yield quantitative results. In a general scenario it is

important to explore the possibility of using an axisymmetric analysis as a qualitative

solution to the general problem.  Clearly, the individual frequencies cannot be used in an

inversion such as

{ } { }0p
h
s cf →lW (293)

because there is no reason to believe that the axisymmetric coefficients should yield the

correct frequency splitting even if there were exactly 1+l  observed frequencies per

resonance.  Instead, consider the inversion first mentioned in Section V-C, which can be

written

{ } { }0,24020
maxminmax

1
min

10 ,,,,,,,, LLsLssss cccfffff LL →W . (294)

The required data are the minimum and maximum observed frequencies for resonances of

order L≤l .  Any overtone will suffice for a given l  although in practice it may prove

most easy to use the fundamental for each mode.  The frequency sf0  establishes the ratio

c/a.  At the same time consider the less restrictive inversion

{ } { }LLsLssss fffff 242
maxminmax

1
min

10
~

,,
~

,
~

,,,,, ΠΠΠ→ LLW (295)

where

∑
=

≡Π
l

l

2

2

2
02

~~

even
p

pc (296)

is a measure of the summed power of deformation modes.  The tilde notation indicates

that the deformation coefficients are not expected to represent the true shape of the

cavity.  Rather, the strategy here is to establish that the frequency span minmax
ss ff ll −  of

any given resonance group sfl  is approximately a function of l2
~Π .  Or in other words, it

is sought to identify the validity of the power-preserving approximation

∑ ∑
= −=

≡Π≈Π
l

ll

2

2

2
22

~

even
p

p

pq

pqc . (297)
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The right-hand-side of equation (297) is the actual deformation power for a given set of

coefficients pqc .  The left-hand-side is the power computed using the inversion of

equation (295) described in Section V-C.

To test the validity of equation (297), mock data were constructed using random values

for cavity deformation coefficients.  Let N be the number of numerically created cavities.

The following constraints apply

∑∑ ∑
== −= −

≤
ll 2

2

2
0

2

2

2

1
even
p

p

even
p

p

pq

pq cc
α

α
(298)

( ) pq
q

qp cc 1, −=− (299)

22
2

2
1 pppp ccc ≥≥≥ L (300)

1.19.0;
0

1

0 ≤≤=∑
= u

c
u

N

c p
N

n

p
   . (301)

Equation (298) establishes a measure of a cavity’s axisymmetry using a coefficient

10 ≤≤ α .  If 1=α  then the cavity is axisymmetric and as α tends toward zero the

axisymmetric coefficients vanish.  Equation (299) is the condition that yields a real cavity

boundary.  Equation (300) forces the cavity shape to be azimuthally less complicated.

These first three conditions allow the construction of cavities that conform to

manufacturing expectations.  And finally, equation (301) forces the average value of each

of the axisymmetric coefficients to the same value u; and individually variable by 10%

from this value.  This last condition is mainly imposed so that the data can be graphed in

a visually clear manner.  Once the deformation coefficients are selected the frequencies

are computed according to the boundary perturbation theory.  These frequencies are then

fit according to equation (295) to obtain the axisymmetric fit power pΠ~ .  Finally this

power can by compared with the actual power of the coefficients used to construct the
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data pΠ .  For each value of α considered the data set consisted of 256=N cavities.  The

“goodness of fit” δ  for a given cavity is defined by
























 −+






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 −≡ ∑∑
==
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ff
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ff

L 1

2

max
0

max
0

max
0

1

2

min
0

min
0

min
02

ˆˆ

2

1

l l

ll

l l

llδ (302)

where f̂  indicates the axisymmetric-fit frequency.  Also of interest is the data inclusion

factor δR  defined by

setsdataofnumbertotal

withsetsdataofnumber δδ
δ

≤≡R . (303)

In practice 1<δ  so that we define 11 =R .  Typically the subscript for R is omitted.

Figures VII-1 through VII-9, given on the following pages, display data for differing α

and δ .  The six different graph symbols represent the sum deformation power, equation

(296), for the following values of p: 2 – triangle; 4 – square; 6 – hexagon; 8 – star; 10 –

cross; and 12 – circle.  The essential features of this axisymmetric decomposition

technique are:

1. The total power of the deformation through mode 12 is generally recoverable for data

with a goodness-of-fit less than 0.04; this restriction corresponds to R > 84%.

2. Data with larger values of α (higher modeled axisymmetry) are fit with higher

confidence.  However, spurious fits for 10≥p  still represent a few percent of

possible cases.

3. The power in any individual mode has a much higher uncertainty than the total

power.  The exception is mode 2 for which the power is recoverable with very low

uncertainty.

4. The average value of pΠ~  for a set of cavities is larger than the average value of pΠ

by a few percent.  This difference is reduced for higher α.

5. Spurious data tend to overestimate the power.  Certainly, the largest deviations of the

fit are overestimations.
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A second test of equation (297) was performed using a slightly altered axisymmetric

fitting routine.  In this case it is assumed that the radial mode frequency, and therefore the

ratio c/a is missing or unreliable.  The mock data now consist of the total relative

frequency spread for each mode, and the inversion is

{ } { }LLsss fff 24221
~

,,
~

,
~

,,, ΠΠΠ→∆∆∆ LLW (304)

where

minmax

minmax

2
ss

ss
s

ff

ff
f

ll

ll
l

+

−
≡∆ . (305)

As is evident from equation (305) the unperturbed resonance frequency is taken to be the

average of the maximum and minimum observed frequencies for each mode.  The

goodness-of-fit function is taken to be

∑
=












∆

∆−∆
≡

L

f

ff

L 1

2

0

002
ˆ1

l l

llδ . (306)

The results of this type of axisymmetric fitting are shown in Figure VII-10.  This single

set of data shows the fits for 256 constructed cavities of 95.0=α .  This type of fit does

have a rather large uncertainty, but it is not plagued by outliers.  The standard deviation

for a given p value is roughly constant, and the average values are large by a few percent.

Other values of α  from 0.50 to 0.99 have little effect on the quality of the fit – the

method is very robust.
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1180.0 === Rδα

pΠ~

pΠ

Figure VII-1
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1190.0 === Rδα

pΠ~

pΠ

Figure VII-2



100

1195.0 === Rδα

pΠ~

pΠ

Figure VII-3
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844.004.080.0 === Rδα

pΠ~

pΠ

Figure VII-4
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953.004.090.0 === Rδα

pΠ~

pΠ

Figure VII-5
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984.004.095.0 === Rδα

pΠ~

pΠ

Figure VII-6



104

691.002.080.0 === Rδα

pΠ~

pΠ

Figure VII-7
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906.002.090.0 === Rδα

pΠ~

pΠ

Figure VII-8
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977.002.095.0 === Rδα

pΠ~

pΠ

Figure VII-9
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1195.0 === Rδα

pΠ~

+26%

-19%

sdev = 21%
mean = +4%

sdev = 26%
mean = +4%

pΠ

Figure VII-10
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F.  Solid Fuel Distribution

Acoustically determining the distribution of solid within a cavity is a special case of the

cavity boundary characterization discussed in the previous subsection.  The specific

scenario of interest to the ICF community is to characterize the distribution of solid

hydrogens as beta-layering takes place.  While this task might be approached from a few

different paths (e.g., pulsed acoustic thickness measurements or elastic vibrational

response of the shell), the method considered here is that of interpretation of the fluid

resonances of the enclosed gas.

The representative ICF capsule at cryogenic temperatures is shown in Appendix M as a

highly spherically symmetric object of three clear layers.  This picture is idealized in at

least three aspects.

First, the capsule will have defects ranging from polish variations to thickness variations

to hemishell bonding asymmetries.  These aspects of the capsule have already been

discussed in some detail.

Second, the solid DT layer must be grown over a period of a few hours under strict

temperature conditions (and possibly according to complicated thermodynamic recipes).

The basic growth mechanism is that of beta-layering.  In this process a confined self-

heated solid will redistribute its mass to conform to isotherms.  For an ICF capsule the

DT is self-heated by beta decay and reabsorption, so that if the capsule surface is held at

constant temperature the solid forms a spherically symmetric layer within the cavity.  A

good starting reference that details this phenomenon is Hoffer and Foreman (1988).

The final solid distribution may reflect the thermal perturbations outside of the capsule

during the layer growth.  This effect will be softened in proportion to the thermal

conductivity of the shell.  In most scenarios the capsule is mounted in axially symmetric

or spherically symmetric structures.  Thus, the thermal perturbations will have similar
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symmetry.  It can be expected then that the axially symmetric data reduction schemes

discussed in the previous subsection may be very useful.

Third, crystal structure of the DT solid is not well understood and is certainly associated

with mid- and high-order surface finish perturbations.  These perturbations are beyond

the reach of the acoustic methods of this report, but they have great importance for

ignition success.  It is likely, however, that the characterization of the first several

deformation modes is indicative of the progress of beta-layering and possibly an

estimator of the higher-order mode properties as well.
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APPENDIX A – Spherical Polar Coordinates

This appendix lists several important identities for working with spherical polar

coordinates.  A good reference for all aspects of spherical polar coordinates is Arfken

(1985).
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= φθθ

(A11)

Here n̂ is the unit normal to the surface S, dV is the volume element, dΩ is the solid angle

element, dS is the surface area element, and ψ is any scalar function.
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APPENDIX B – Spherical Bessel Functions of the First Kind

The spherical Bessel functions of the first kind are denoted ( )zjl  and are solutions of the

radial Helmholtz equation in spherical polar coordinates.  They are related to the Bessel

functions ( )zJ l  as ( ) ( )zJzzj 212 += ll π .  The first few spherical Bessel functions are

given below as well as a useful recursion relation for extending this list.  An excellent

reference for further properties and discussion is Arfken (1985).
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APPENDIX C – Spherical Harmonic Functions

The spherical harmonic functions are the normalized solutions to Legendre’s equation in

spherical polar coordinates and are denoted ( )φθ ,mYl .  In general, each function depends

upon both polar and azimuthal coordinate and is described by a polar and azimuthal index

pair ( )ml  where l  is a non-negative integer and l≤m .  Many of these functions are

tabulated below.  References for additional properties and discussion include Arfken

(1985) and MacRobert (1948).
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For :3=l
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Some higher-order expressions are
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For obtaining expressions for negative values of m use the relation
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−
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The spherical harmonic functions are related to the associated Legendre polynomials by

the expression.

( ) ( ) ( )
( )

( ) φθ
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φθ im
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Higher-order associated Legendre polynomials can be generated with
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or alternately,
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Equations (C21), (C18), and (A7) show that
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mmt YYr ll ll
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APPENDIX D – Roots of the Spherical Bessel Functions and Their Derivatives

The following table lists many of the lowest-order roots szl of the expression

( ) 0=zjl (D1)

where l  is the order of the spherical Bessel function and the index s enumerates the roots

beginning at the fundamental (s = 0) and proceeding through the overtones (s > 0).  The

0=l  roots are the integer multiples of π.

Table D1

s = 0 s = 1 s = 2 s = 3 s = 4

0=l 3.14159265 6.28318531 9.42477796 12.56637061 15.70796327

1=l 4.49340946 7.72525184 10.90412166 14.06619391 17.02207553

2=l 5.76345920 9.09501133 12.32294097 15.51460301 18.68903636

3=l 6.98793200 10.41711855 13.69802315 16.92362129 20.12180617

4=l 8.18256145 11.70490715 15.03966471 18.30125596 21.52541773

5=l 9.35581211 12.96653017 16.35470964 19.65315210 22.90455065

6=l 10.51283541 14.20739246 17.64797487 20.98346307 24.26276804

7=l 11.65703219 15.43128921 18.92299920 22.29534802 25.60285595

8=l 12.79078171 16.64100288 20.18247076 23.59127482 26.92704078

9=l 13.91582261 17.83864320 21.42848697 24.87321392 28.23713436
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The following table lists many of the lowest-order roots szl of the expression

( ) ( )
0=

∂

∂
≡′

z

zj
zj l

l (D2)

where l  is the order of the spherical Bessel function and the index s enumerates the roots

beginning at the fundamental (s = 0) and proceeding through the overtones (s > 0).

Table D2

s = 0 s = 1 s = 2 s = 3 s = 4

0=l 0.00000000 4.49340946 7.72525184 10.90412166 14.06619391

1=l 2.08157598 5.94036999 9.20584014 12.40444502 15.57923641

2=l 3.34209366 7.28993230 10.60385504 13.84611188 17.04290219

3=l 4.51409965 8.58375496 11.97273003 15.24451382 18.46814778

4=l 5.64670362 9.84044604 13.29556386 16.60934590 19.86242396

5=l 6.75645633 11.07020687 14.59055216 17.94717953 21.23106830

6=l 7.85107768 12.27933398 15.86322182 19.26270994 22.57805807

7=l 8.93483888 13.47203035 17.11750573 20.55942813 23.90644997

8=l 10.01037075 14.65126281 18.35631834 21.84001208 25.21865244

9=l 11.07941839 15.81921549 19.58188902 23.10656842 26.51660256
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APPENDIX E – Axisymmetric Fluid Resonance Representations

The following table displays pressure distribution gray-scale representations of several

low-order mode resonances.  For a detailed discussion see the main text.

Table E1

s = 0 s = 1 s = 2 s = 3

l = 0
“monopole”

no solution

l = 1
“dipole”

l = 2
“quadrupole”

l = 3
“hexapole”

l = 4
“octopole”
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APPENDIX F – Useful Mathematical Relations

The following series expansions and identities are used to derive many of the results in

the main text.
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APPENDIX G – Clebsch-Gordan Coefficients

This appendix tabulates Clebsch-Gordan Coefficients used in the boundary perturbation

calculations presented in Section III.  The relevant coefficients are of the form

( )mmqpC ′;ll  and vanish unless qmm +=′  and l2≤p .  One additional constraints of

the calculations require that p>0 is even and that pq ≤ .  The tables below also list the

C
~

 coefficients defined by ( ) ( ) ( )0,0,0;,,,,;,,,,;,,
~

llllll pCmqmpCmqmpC ′≡′ .  These

calculations can be performed by a mathematics solver package or through standard

formulae such as given by Rose (1957) and others.

Table G1

2;1 == pl

( )mm ′, C C
~

(0,0)
5

2−
5

2

(-1,-1) (1,1)
10

1

5

1−

(-1,0) (1,0)
10

3

5

3−

(-1,1) (1,-1)
5

3

5

6−

(0,-1) (0,1)
10

3−
5

3
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Table G2

2;2 == pl

( )mm ′, C C
~

(0,0)
7

2−
7

2

(-2,-2) (-2,0) (0,-2)
(0,2) (2,0) (2,2) 7

2

7

2−

(-2,-1) (-1,1) (1,-1) (2,1)
7

3

7

6−

(-1,-2) (1,2)
7

3−
7

6

(-1,-1) (0,-1) (0,1) (1,1)
14

1−
7

1

(-1,0) (1,0)
14

1

7

1−
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Table G3

4;2 == pl

( )mm ′, C C
~

(0,0)
7

2

7

2

(-2,-2) (2,2)
14

1

3

1

21

1

(-2,-1) (2,1)
14

5

3

1

21

5

(-2,0) (0,-2) (0,2) (2,0)
42

5

3

5

7

1

(-2,-1) (2,-1)
2

5

3

1

7

5

3

1

(-2,2) (2,-2)
3

5

7

10

3

1

(-1,-2) (1,2)
14

5

3

1−
21

5−

(-1,-1) (1,1)
7

2

3

2−
21

4−

(-1,0) (1,0)
21

5−
3

10

7

1−

(-1,1) (1,-1)
7

5

3

2−
21

102−

(-1,2) (1,-2)
2

5

3

1−
7

5

3

1−

(0,-1) (0,1)
21

5

3

10

7

1
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Higher-order coefficients are tabulated only for axisymmetric calculations for which

mm ′= .

Table G4

mm ′== ;3l

( )mp,,l C C
~

(3,2,0)
15

2−
15

4

(3,2,1)
5

3

2

1−
5

1

(3,2,2) 0 0

(3,2,3)
3

5

2

1

3

1−

(3,4,0)
11

2

11

2

(3,4,1)
223

1

33

1

(3,4,2)
223

7−
33

7−

(3,4,3)
22

1

11

1

(3,6,0)
429

10−
429

100

(3,6,1)
143

3

2

5

143

25−

(3,6,2)
143

3−
143

10

(3,6,3)
4292

1

429

5−
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Table G5

mm ′== ;4l

( )mp,,l C C
~

(4,2,0) 7752− 7720

(4,2,1) 385217− 7717

(4,2,2) 3854− 778

(4,2,3) 2207 111−

(4,2,4) 5572 114−

(4,4,0) 100129 1001162

(4,4,1) 20029 100181

(4,4,2) 18211− 919−

(4,4,3) 28673− 14327−

(4,4,4) 14314 14318

(4,6,0) 14352− 14320

(4,6,1) 71521 1431−

(4,6,2) 6511 132−

(4,6,3) 715217− 14317

(4,6,4) 7152 1434−

(4,8,0) 2431107 2431490

(4,8,1) 12155228− 2431392−

(4,8,2) 12155214 2431196

(4,8,3) 1215524− 243156−

(4,8,4) 243101 24317
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Table G6

mm ′== ;5l

( )mp,,l C C
~

(5,2,0) 3910− 3910

(5,2,1) 13033− 133

(5,2,2) 656− 132

(5,2,3) 3901− 391

(5,2,4) 656 132−

(5,2,5) 2615 135−

(5,4,0) 132 132

(5,4,1) 11722 394

(5,4,2) 2631− 391−

(5,4,3) 132− 132−

(5,4,4) 132− 132−

(5,4,5) 132 132

(5,6,0) 66354− 66380

(5,6,1) 110532− 2218

(5,6,2) 110536 22124−

(5,6,3) 3315229 66358−

(5,6,4) 110538− 22132

(5,6,5) 88415 22110−

(5,8,0) 4199107 4199490

(5,8,1) 2099527− 419998−

(5,8,2) 1235342− 24728−

(5,8,3) 4199073 4199511
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Table G6 cont.

mm ′== ;5l

( )mp,,l C C
~

(5,8,4) 4199031− 4199217−

(5,8,5) 83985 419935

(5,10,0) 4199216− 4199756

(5,10,1) 4199215 4199630−

(5,10,2) 29393320− 4199360

(5,10,3) 117572315 4199135−

(5,10,4) 881795− 419930

(5,10,5) 8817921 41993−
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Table G7

mm ′== ;6l

( )mp,,l C C
~

(6,2,0) 5514− 5514

(6,2,1) 77013− 5513

(6,2,2) 7710− 112

(6,2,3) 1545− 111

(6,2,4) 3852 552−

(6,2,5) 7011 51−

(6,2,6) 3522 52−

(6,4,0) 18772 18728

(6,4,1) 1178132 56164

(6,4,2) 428411 511

(6,4,3) 13099− 18718−

(6,4,4) 130916− 18732−

(6,4,5) 11911− 172−

(6,4,6) 476113 173

(6,6,0) 355320− 3553400

(6,6,1) 355310− 3553200

(6,6,2) 32311 32320−

(6,6,3) 1421243 3553430−

(6,6,4) 35534 355380−

(6,6,5) 1292115− 355350

(6,6,6) 32311 32320−

(6,8,0) 3553145 3553350
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Table G7 cont.

mm ′== ;6l

( )mp,,l C C
~

(6,8,1) 2487125 355350

(6,8,2) 4974271− 3553355−

(6,8,3) 261819− 1875−

(6,8,4) 4974289 3553445

(6,8,5) 4522115− 32325−

(6,8,6) 452211 3235

(6,10,0) 7429216− 7429756

(6,10,1) 52003313 7429234−

(6,10,2) 7429215 7429630−

(6,10,3) 10948575− 39145

(6,10,4) 15600983 7429498−

(6,10,5) 8914877− 7429147

(6,10,6) 520033 742918−

(6,12,0) 185725766 18572530492

(6,12,1) 1300075396− 18572526136−

(6,12,2) 20801299 371453267

(6,12,3) 5200322− 371451452−

(6,12,4) 130007533 1857252178

(6,12,5) 1300056− 185725396−

(6,12,6) 52003001 18572533
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APPENDIX H – B Matrices and Eigenvalues

The B matrices are given by

( ) pq

even
p

ps
s
mm cmmqpCK ′= ∑

=
′ ;

~
2

2

ll
l

l
lB (H1)

which is equation (106).  The K coefficients are defined as

( ) ( )
( ) 














+−

+++−+≡
1

11

4

12
2

2

12

ll

ll

l

l

l

s

s

ps
z

ppzp
K

π
(H2)

which is equation (107).  These coefficients are of order unity unless p is very large.  For

very large overtone number ( ∞→s ) K approaches the square root term for all l  values.

The general matrices for 1=l  and 2=l  are:



















−+−

++−

−−−

=

202122

212021

222120

121

36

323

63

5
ccc

ccc

ccc
K ssB (H3)











































+−−−−

−−+−−

−++−−+−

−−−−−−+−

+−+−+−

=

40242022412421224224222243244424

412421224024202241242122422422224324

4224222241242122402420224124212242242222

432442242222412421224024202241242122

44244324422422224124212240242022

2

65631563570

563433031026335

15630366303156

351026330343563

70351565636

21

1

cKcKcKcKcKcKcKcK

cKcKcKcKcKcKcKcKcK

cKcKcKcKcKcKcKcKcKcK

cKcKcKcKcKcKcKcKcK

cKcKcKcKcKcKcKcK

ssssssss

sssssssss

ssssssssss

sssssssss

ssssssss

sB

(H4)

and higher-order matrices quickly become cumbersome and are not reproduced here.

The eigenvalues of B1s are
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( )

( )

( )







































 +−−+






 +−++

+−

=Λ

2
21

2

22202220
12

2
21

2

22202220
12

2220
12

1

24636
10

24636
10

6
5

ccccc
K

ccccc
K

cc
K

s

s

s

s . (H5)

The eigenvalues for axisymmetric perturbations ( 0=q ) up to 6=l are given below.

Notice that the number of distinct eigenvalues is 1+l instead of the maximum possible

12 +l .  As listed above, each expression represents a doubly degenerate eigenvalue

except the first in each set, which is nondegenerate.  Taking this degeneracy into account,

the eigenvalues for each set sum to zero.













−
=Λ

2012

2012
1

2
5

cK

cK

s

s
s (H6)



















+−

−

+

=Λ

40242022

40242022

40242022

2

6

43

66

21

cKcK

cKcK

cKcK

ss

ss

ss

s (H7)



























−+−

+−

−+

++

=Λ

603640342032

60364034

603640342032

603640342032

3

25195715

150455

37565429

500390572

2145

cKcKcK

cKcK

cKcKcK

cKcKcK

sss

ss

sss

sss

s (H8)































+−+−

−+−−

+−−

−−+

+++

=Λ

8048604640442042

8048604640442042

8048604640442042

8048604640442042

8048604640442042

4

4947621426188

392202332131547

1372261816831768

274411913773757

3430238027544420

17017

cKcKcKcK

cKcKcKcK

cKcKcKcK

cKcKcKcK

cKcKcKcK

ssss

ssss

ssss

ssss

ssss

s (H9)
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



























































−+

−+−

+−

+−−

−+

−−

+−

−−

−−

++

++

++

=Λ

0,10,10,58058

605640542052

0,10,10,58058

605640542052

0,10,10,58058

605640542052

0,10,10,58058

605640542052

0,10,10,58058

605640542052

0,10,10,58058

605640542052

5

9105

5706464845

90651

18246461938

4051533

1102646323

10801428

13683231938

1890294

45612972907

22681470

152019383230

12597

cKcK

cKcKcK

cKcK

cKcKcK

cKcK

cKcKcK

cKcK

cKcKcK

cKcK

cKcKcK

cKcK

cKcKcK

ss

sss

ss

sss

ss

sss

ss

sss

ss

sss

ss

sss

s (H10)

.

10891485094875

37950010815752451570

13068121275474375

862507210501225785

71874410850767625

1380001048800222870

239580705375163875

741750589950557175

539055519750612375

3795001201751114350

86248819305086250

3450006992001448655

1006236623700603750

6900009177001560090

6128925

,12,12,60,10,10,68068

606640642062

,12,12,60,10,10,68068

606640642062

,12,12,60,10,10,68068

606640642062

,12,12,60,10,10,68068

606640642062

,12,12,60,10,10,68068

606640642062

,12,12,60,10,10,68068

606640642062

,12,12,60,10,10,68068

606640642062

6





































































+−+

−+−

−+−

+−−

+−+

−−−

−+−

−−

+−−

−+

−−+

++

+++

++

=Λ

ssss

sss

ssss

sss

ssss

sss

ssss

sss

ssss

sss

ssss

sss

ssss

sss

s

cKcKcK

cKcKcK

cKcKcK

cKcKcK

cKcKcK

cKcKcK

cKcKcK

cKcKcK

cKcKcK

cKcKcK

cKcKcK

cKcKcK

cKcKcK

cKcKcK

(H11)
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Next, consider the following numerical approximations to equations (H6) through (H11)

for the fundamental resonances 0=s .  Each expression represents a doubly degenerate

eigenvalue except the first in each set, which is nondegenerate.













−

+
=Λ

20

20
10

288.0

577.0

c

c
(H12)



















+−

−+

++

=Λ

4020

4020

4020

20

118.0285.0

473.0142.0

710.0285.0

cc

cc

cc

(H13)



























−+−

+−

−++

+++

=Λ

604020

6040

604020

604020

30

042.0169.0286.0

249.0394.0

628.0056.0171.0

831.0338.0228.0

ccc

cc

ccc

ccc

(H14)































+−+−

−+−−

+−−+

−−++

++++

=Λ

80604020

80604020

80604020

80604020

80604020

40

013.0079.0196.0287.0

108.0335.0294.0072.0

378.0433.0154.0082.0

756.0020.0126.0174.0

945.0394.0252.0205.0

cccc

cccc

cccc

cccc

cccc

(H15)



































−+−+−

+−+−−

−+−−+

+−−−+

−−+++

+++++

=Λ

0,1080604020

0,1080604020

0,1080604020

0,1080604020

0,1080604020

0,1080604020

50

004.0032.0108.0071.0289.0

042.0198.0345.0071.0116.0

188.0467.0208.0071.0019.0

500.0435.0259.0036.0116.0

876.0090.0086.0143.0173.0

051.1448.0287.0213.0193.0

ccccc

ccccc

ccccc

ccccc

ccccc

ccccc

(H16)
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.

001.0012.0051.0130.0225.0291.0

015.0097.0255.0030.0150.0145.0

082.0329.0413.0047.0219.0026.0

274.0565.0088.0255.0123.0066.0

617.0417.0329.0130.0025.0132.0

987.0155.0046.0118.0146.0172.0

151.1500.0325.0237.0191.0185.0

0,120,1080604020

0,120,1080604020

0,120,1080604020

0,120,1080604020

0,120,1080604020

0,120,1080604020

0,120,1080604020
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





































+−+−+−

−+−+−−

+−+−−−

−+−−−+

+−−−++

−−++++

++++++

=Λ

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

cccccc

(H17)
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APPENDIX I – Material Properties of Some Solids

The following table lists material properties of solids as gathered from a variety of

sources.  Neither the materials list nor the cited properties list is intended to be

comprehensive.  However, the lists reflect items of interest to fusion capsule fabricators

and experimentalists.  The given elastic constants are those for isotropic symmetry

(assumed for polycrystalline samples).  Many sound velocities are computed using

ρµ=2
Sc  and ( ) ρµλ 22 +=Lc .  Note also the relationship between the Lamé constants

and the standard crystallographic notation: 44c=µ , 12c=λ , and thus µλ 211 +=c .  All

quantities are given in cgs units.  Estimated quantities are marked with an asterisk.

Table I1

Property Al Be Cu Au SS304 D2 DT*

T 298 294 298 298 298 18.7 19.8

ρ 2.70 1.85 8.93 19.7 7.91 0.206 0.253

λ (1011) 6.14 1.712 10.6 15.0 11.3 0.018 0.021

µ (1011) 2.49 14.87 4.83 2.84 7.60 0.021 0.024

cS (105) 3.04 8.96 2.33 1.20 3.10 1.00 0.97

cL (105) 6.42 13.04 4.76 3.24 5.79 1.70 1.65

ρcL (104) 173 241 425 638 458 3.5 4.2

The tables on the following pages provide additional data on various materials over a

range of temperatures.  All values are in cgs units.
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Thermophysical Properties of Aluminum

T ρ CP K ρ CP K λ µ cS cL ρcL

107 107 1014 1011 1011 102 102 104

15 2.73 0.013 176 ~6 --- --- --- --- ---

20 2.73 0.02 117 ~6 6.26 2.80 3200 6590 180

25 2.73 0.03 77.3 ~6 --- --- --- --- ---

50 2.73 0.15 12.3 5.0 --- --- --- --- ---

75 2.73 0.35 4.39 4.2 --- --- --- --- ---

100 2.73 0.49 3.02 4.0 6.25 2.76 3180 6570 179

125 2.73 0.60 2.70 4.4 --- --- --- --- ---

150 2.72 0.69 2.48 4.7 6.23 2.71 3160 6540 178

175 2.72 0.76 2.42 5.0 --- --- --- --- ---

200 2.72 0.80 2.37 5.2 6.20 2.64 3120 6500 177

225 2.71 0.83 2.36 5.3 --- --- --- --- ---

250 2.71 0.86 2.35 5.5 6.17 2.57 3090 6460 175

275 2.70 0.88 2.36 5.6 --- --- --- --- ---

300 2.70 0.90 2.37 5.8 6.14 2.49 3040 6420 173
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Thermophysical Properties of Beryllium

T ρ CP K ρ CP K λ µ cS cL ρcL

107 107 1014 1011 1011 102 102 104

15 1.86 0.01 26.8 ~0.5 --- --- --- --- ---

20 1.86 0.015 34.8 ~1 1.60 15.2 9040 13100 244

25 1.86 0.02 41.2 ~1.5 --- --- --- --- ---

50 1.86 0.04 40.0 ~3 --- --- --- --- ---

75 1.86 0.08 18.9 ~3 1.60 15.2 9040 13100 244

100 1.86 0.15 9.90 2.7 1.61 15.2 9040 13100 244

125 1.86 0.33 7.20 4.4 --- --- --- --- ---

150 1.86 0.65 4.51 5.5 1.62 15.1 9030 13100 243

175 1.86 0.89 3.75 5.6 --- --- --- --- ---

200 1.85 1.09 3.01 6.1 1.65 15.1 9030 13100 243

225 1.85 1.32 2.68 6.5 --- --- --- --- ---

250 1.85 1.49 2.36 6.5 1.68 15.0 9000 13100 242

275 1.85 1.66 2.18 6.7 1.70 14.9 8970 13000 241

300 1.85 1.81 2.00 6.7 1.72 14.8 8940 13000 241
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Thermophysical Properties of Copper

T ρ CP K ρ CP K λ µ cS cL ρcL

107 107 1014 1011 1011 102 102 104

15 9.02 0.012 156 17 --- --- --- --- ---

20 9.02 0.019 105 18 10.9 5.06 2370 4830 435

25 9.02 0.025 68.0 15 --- --- --- --- ---

50 9.02 0.11 12.2 12 10.9 5.06 2370 4830 435

75 9.01 0.20 6.15 11 --- --- --- --- ---

100 9.01 0.26 4.83 11 10.9 5.01 2360 4820 434

125 9.00 0.29 4.55 12 --- --- --- --- ---

150 8.99 0.32 4.28 12 10.8 4.99 2360 4810 432

175 8.98 0.34 4.20 13 --- --- --- --- ---

200 8.97 0.36 4.13 13 10.7 4.95 2350 4790 430

225 8.96 0.37 4.08 14 --- --- --- --- ---

250 8.95 0.38 4.04 14 10.7 4.89 2340 4780 428

275 8.94 0.38 4.01 14 --- --- --- --- ---

300 8.93 0.39 3.98 14 10.6 4.83 2330 4760 425
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Thermophysical Properties of Gold

T ρ CP K ρ CP K λ µ cS cL ρcL

107 107 1014 1011 1011 102 102 104

15 19.9 --- 22.6 --- --- --- --- --- ---

20 19.9 0.019 15.0 5.7 15.7 2.96 1220 3300 657

25 19.9 0.036 10.2 7.3 --- --- --- --- ---

50 19.9 0.075 4.20 6.3 15.6 2.96 1220 3290 654

75 19.9 0.094 --- --- --- --- --- --- ---

100 19.9 0.107 3.45 7.3 15.5 2.94 1220 3280 652

125 19.8 0.114 3.40 7.7 --- --- --- --- ---

150 19.8 0.120 3.35 8.0 15.4 2.91 1210 3270 648

175 19.8 0.123 3.31 8.1 --- --- --- --- ---

200 19.8 0.125 3.27 8.1 15.3 2.88 1210 3260 646

225 19.8 0.125 --- --- --- --- --- --- ---

250 19.7 0.126 3.20 7.9 15.1 2.86 1200 3250 640

275 19.7 0.127 3.18 8.0 --- --- --- --- ---

300 19.7 0.129 3.15 8.0 15.0 2.84 1200 3240 638
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Thermophysical Properties of SS304

T ρ CP K ρ CP K λ µ cS cL ρcL

107 107 1014 1011 1011 102 102 104

15 7.98 --- 0.014 --- --- --- --- --- ---

20 7.98 --- 0.020 --- 11.5 8.00 3170 5870 468

25 7.98 --- 0.027 --- --- --- --- --- ---

50 7.98 0.27 0.055 0.12 11.5 7.99 3160 5870 468

75 7.98 --- 0.075 --- --- --- --- --- ---

100 7.97 0.33 0.090 0.24 11.4 7.94 3160 5850 467

125 7.97 --- 0.10 --- --- --- --- --- ---

150 7.96 0.36 0.11 0.32 11.4 7.87 3140 5840 465

175 7.95 --- --- --- --- --- --- --- ---

200 7.94 0.40 0.12 0.38 11.3 7.78 3130 5820 462

225 7.93 --- --- --- --- --- --- --- ---

250 7.92 0.44 0.14 0.49 11.3 7.69 3120 5800 460

275 7.91 --- --- --- --- --- --- --- ---

300 7.90 0.465 0.15 0.55 11.3 7.60 3100 5790 458
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Thermophysical Properties of Solid Hydrogens (near 18K)

ρ CP K ρ CP K λ µ cS cL ρcL

107 105 1012 1011 1011 102 102 104

H-H 0.087 3.1 0.30 0.08 0.010 0.011 1100 1880 1.6

H-D 0.139 3.0 --- --- 0.015 0.015 1050 1790 2.5

H-T 0.190 2.9 --- --- 0.017 0.020 1030 1750 3.3

D-D 0.197 2.7 0.31 0.18 0.018 0.021 1000 1700 3.5

D-T 0.253 3.5 --- --- 0.021 0.024 970 1650 4.2

T-T 0.311 2.0 --- --- 0.024 0.028 950 1600 5.0
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APPENDIX J – Physical Properties of Some Fluids

The following tables list material properties of gases and liquids gathered from a variety

of sources.  Neither the fluid list nor the cited properties list is intended to be

comprehensive.  However, the lists reflect items of interest to fusion capsule fabricators

and experimentalists.  For computational purposes a fluid can often be treated as a solid

for which shear elastic constants are zero, thus the table includes an effective Lamé

constant λ (= ρ c2).  The data were taken from a variety of sources and estimated data are

marked with an asterisk.  All values are in cgs units unless otherwise noted.  An excellent

source for additional information on a variety of elemental gases is Friend (1992).

Table J1 – Physical Properties of Some Gases

property air D2 D2 D2 D-T D-T D-T He-4

T 298 298 30 19 298 30 20 19

P (atm) 1.00 350 4.43 0.192 350 3.92* 0.198 0.10

ρ (10-3) 1.225 47.3 8.24 0.050 53* 9.66* 0.0778 0.26

c (102) 340 1141 320 259 1000* 290* 230* 258

ρc 41.7 5400 264 1.30 5300* 280 1.79* 6.7

λ (105) 14.2 6160 84.4 0.335 5300* 81.2 0.41* 1.7

η (10-3) 0.184 0.13 0.02* 0.013* 0.14* 0.02* 0.014* 0.195

ηb (10-3) 0.11 2.9* 0.4* 0.26* 1* 1* 1* 0

CP (107) 1.01 7.61 5.36 5.2 7.4* 5.5* 7.0* 5.3

γ 1.40 1.41 2.37 1.66 1.4* 2.4* 1.66* 1.68

K (103) 2.64 13 1.5 0.7 12* 1.5* 0.9* 2.5

ρCpK (107) 3.27 4680 66.2 0.18 4706 80 0.49 3.45
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Table J2 – Physical Properties of Some Liquids

property water D2 D2 D2 D-T D-T D-T

T 298 38 30 19 38 30 20

P (atm) 1.00 16.5 4.32 0.192 15* 3.9* 0.22*

ρ 1.00 0.070 0.144 0.174 0.14* 0.19* 0.22*

c (102) 1500 266 759 1074 240* 720* 940*

ρc(102) 1500 18.6 109 187 34* 136* 209*

λ (109) 22.5 0.050 0.83 2.01 0.081* 0.98* 2.0*

η (10-3) 10 0.12* 0.21 0.47* 0.15* 0.24* 0.48*

ηb (10-3) 30* --- --- --- --- --- ---

CP (107) 4.19 51.4 10.2 5.50 55* 13* 7.7*

γ --- 7.51 2.12 1.60 --- --- ---

K (103) 61 9.1 13.7 12.4 10* 15* 14*

ρCpK (1011) 26 3.3 2.0 1.2 7.7 3.7 2.4
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The following table lists critical data for the vapor phase of the hydrogen isotopes as

given by Souers (1986).  The subscripts CP and TP indicate critical point data and triple

point data, respectively.  Estimated data are marked with an asterisk.

Table J3 – Critical Data for the Hydrogen Isotopes

property nH2 H-D H-T nD2 D-T T2

M (g/mol) 2.0156 3.0219 4.0239 4.0282 5.0302 6.0321

TCP (K) 33.19 35.91 37.13* 38.34 39.42* 40.44*

PCP (atm) 12.98 14.65 15.50* 16.43 17.50* 18.26*

ρCP (kg/m3) 3.10* 4.84* 6.60* 6.77* 8.75* 10.7*

TTP (K) 13.96 16.60 17.70* 18.73 19.79* 20.62

PTP (atm) 0.0711 0.1221 0.1439* 0.1693 0.1982* 0.2132

ρTP (kg/m3) 0.0127 0.0276* 0.0406* 0.0455* 0.0629* 0.0778*
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APPENDIX K – Thermal Expansion Properties of Some Solids

The linear thermal expansion of many materials from 0K to 300K is well described by

the equation

5
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4
4

3
3

2
210
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293

293 ~~~~~
10 TaTaTaTaTaa

L

LL T +++++=×
−

(J1)

where KTT 100
~ ≡ , L293 is the object length at 293K, and LT is the length at Kelvin

temperature T.  The coefficients an for various materials given in the following table were

derived from data compiled by Corruccini and Gniewek (1961).

Table K1

Al Be Cu Au SS304

0a +415.0 +131.0 +326.0 +324.0 +296.0

1a +10.97 -2.545 +18.26 +17.70 +17.73

2a -21.04 +10.84 -54.24 -137.8 -34.81

3a -58.27 -11.92 -17.67 +67.73 -32.28

4a +26.76 +0.2377 +12.93 -17.31 +18.00

5a -3.578 +0.3042 -1.952 +1.755 -2.610
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APPENDIX L – Thermodynamic Relations

An excellent thermodynamics reference is Callen (1985).  A brief summary of useful

relations is given here.  The specific heats at constant pressure and constant volume

(density) are
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The isentropic and isothermal compressibilities are
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The coefficient of thermal expansion is
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The adiabatic sound speed is

s

Pc 










∂
∂=
ρ

2 . (L6)

These six quantities, equations (L1) through (L6), are thermodynamically linked in a

number of ways.  Some useful relations are
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Other miscellaneous thermodynamic relations are listed below.
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APPENDIX M – Representative ICF Capsule Properties

Figure M1 shows the basic geometric properties and fuel characteristics of a

representative ICF capsule.  The two sections are 60-degree planar slices of spherical

capsules.  At room temperature, the DT gas fuel is of a density to produce 350 atm of

pressure.  The shell thickness is 150 mm.  The same capsule brought below the DT triple

point will form a solid fuel layer, evenly distributed around the inside of the capsule

(beta-layering).  This solid is in equilibrium with its DT vapor at about 0.19 atm.

Figure M1
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APPENDIX N – Notation and Units Summary

A theoretical exposition of this nature requires many symbols representing seemingly

innumerable physical quantities.  Certain diacritics are used as universal modifiers; these

are listed in the first table.  Care has been taken to use a symbol set with few ambiguities,

and in these cases the intended symbol meaning should be clear.  The second table lists

most of the symbols used in this work.  A discussion at the end clarifies the use of units.

Diacritics

0x ambient conditions of x

x ′ acoustic property x (when used as a physical property modifier)

x~ effective x for a nearly spherical cavity

shx shell property x

vx viscous property of x

tx thermal property of x

ρx density wave property of x

CPx critical point property

TPx triple point property

l resonance order number

m resonance azimuthal number

s resonance radial overtone number

p deformation order number

q deformation azimuthal number

Symbols

a spherical cavity radius

mal
velocity potential expansion coefficients

mbl model perturbation expansion parameters
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B nonradial-frequency perturbation eigenmatrices

c adiabatic sound speed

Lc longitudinal wave speed

Sc shear wave speed

pqc general cavity perturbation parameter

CC
~

, Clebsch-Gordan coefficients

PC cavity property set derived from LF

VP CC , specific heats at constant pressure and volume

f frequency

F complex frequency

LL FF
~

, eigenfrequency sets for theoretical evaluation

g angular perturbation function

bg bulk dissipation

mg l mPl  to mYl conversion constant

1−=i imaginary unit

( )zjl spherical Bessel functions of the first kind of order l

k acoustic wavenumber

0k acoustic wavenumber in the absence of viscous and thermal effects

k∆ viscous and thermal correction to 0k

K coefficient of thermal conductivity

ll ′, resonance order number

mm ′, resonance azimuthal number

p deformation order number

PPP ′+= 0 fluid pressure

mPl Legendre polynomial functions

q deformation azimuthal number
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Q resonance “quality” factor

r radial coordinate

sss ′+= 0 fluid entropy

sSl
radial eigenfrequency constants

t time

T temperature

vvv ′+= rrr
0 fluid velocity

V cavity volume -also- thermodynamic volume

w′r divergence-free acoustic velocity

21, ww transverse velocity field solution coefficients

4321 ,,, yyyy Alterman (1959) calculation parameters

mYl
spherical harmonic functions

kaz = roots of spherical Bessel function derivatives

ZZ ˆ, useful constants relating z quantities

α internal fluid to external shell wall displacement ratio

Tα coefficient of thermal expansion

β radii perturbation parameter -also- acoustic admittance

γ lateral shift perturbation parameter

VP CC=γ ratio of specific heats

Λ eigenvalues of matrix B

tv δδ , viscous and thermal penetration lengths

vδ shear viscous penetration length

mlεε , small expansion parameters

sκ adiabatic compressibility

Tκ isothermal compressibility

µλ, isotropic solid Lamé constants
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bηη, coefficients of shear and bulk viscosity

ρρρ ′+= 0 fluid density

σ elongation perturbation parameter

θ polar coordinate

φ azimuthal coordinate

ψ spatial velocity potential

Ψ velocity potential

fπω 2= angular frequency

Units

Throughout this report cgs units are the units of choice.  Notable exceptions are

references to pressure in atmospheres and distances in microns.  The following table lists

the cgs units for various quantities.

temperature K

distance cm

time s

mass g

speed scm /

force 2/ scmgdyne ⋅=

energy 22 / scmgerg ⋅=

density 3/ cmg

pressure, elasticity 22 // scmgcmdyne ⋅=

thermal conductivity 3// sKcmgKscmerg ⋅⋅=⋅⋅

specific heat 22 // sKcmgKerg ⋅⋅=

viscosity scmgcmsdyne ⋅=⋅ // 2
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